Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Manfredi is active.

Publication


Featured researches published by Mark Manfredi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase

Mark Manfredi; Jeffrey A. Ecsedy; Kristan Meetze; Suresh K. Balani; Olga Burenkova; Wei Chen; Katherine M. Galvin; Kara M. Hoar; Jessica Huck; Patrick J. LeRoy; Emily T. Ray; Todd B. Sells; Bradley Stringer; Stephen G. Stroud; Tricia J. Vos; Deborah R. Wysong; Mengkun Zhang; Joseph B. Bolen; Christopher F. Claiborne

Increased Aurora A expression occurs in a variety of human cancers and induces chromosomal abnormalities during mitosis associated with tumor initiation and progression. MLN8054 is a selective small-molecule Aurora A kinase inhibitor that has entered Phase I clinical trials for advanced solid tumors. MLN8054 inhibits recombinant Aurora A kinase activity in vitro and is selective for Aurora A over the family member Aurora B in cultured cells. MLN8054 treatment results in G2/M accumulation and spindle defects and inhibits proliferation in multiple cultured human tumor cells lines. Growth of human tumor xenografts in nude mice was dramatically inhibited after oral administration of MLN8054 at well tolerated doses. Moreover, the tumor growth inhibition was sustained after discontinuing MLN8054 treatment. In human tumor xenografts, MLN8054 induced mitotic accumulation and apoptosis, phenotypes consistent with inhibition of Aurora A. MLN8054 is a selective inhibitor of Aurora A kinase that robustly inhibits growth of human tumor xenografts and represents an attractive modality for therapeutic intervention of human cancers.


Cancer Research | 2010

Evaluation of the Proteasome Inhibitor MLN9708 in Preclinical Models of Human Cancer

Erik Kupperman; Edmund Lee; Yueying Cao; Bret Bannerman; Michael C. Fitzgerald; Allison Berger; Jie Yu; Yu Yang; Paul Hales; Frank J. Bruzzese; Jane Liu; Jonathan L. Blank; Khristofer Garcia; Christopher Tsu; Larry Dick; Paul Fleming; Li Yu; Mark Manfredi; Mark Rolfe; Joe Bolen

The proteasome was validated as an oncology target following the clinical success of VELCADE (bortezomib) for injection for the treatment of multiple myeloma and recurring mantle cell lymphoma. Consequently, several groups are pursuing the development of additional small-molecule proteasome inhibitors for both hematologic and solid tumor indications. Here, we describe MLN9708, a selective, orally bioavailable, second-generation proteasome inhibitor that is in phase I clinical development. MLN9708 has a shorter proteasome dissociation half-life and improved pharmacokinetics, pharmacodynamics, and antitumor activity compared with bortezomib. MLN9708 has a larger blood volume distribution at steady state, and analysis of 20S proteasome inhibition and markers of the unfolded protein response confirmed that MLN9708 has greater pharmacodynamic effects in tissues than bortezomib. MLN9708 showed activity in both solid tumor and hematologic preclinical xenograft models, and we found a correlation between greater pharmacodynamic responses and improved antitumor activity. Moreover, antitumor activity was shown via multiple dosing routes, including oral gavage. Taken together, these data support the clinical development of MLN9708 for both hematologic and solid tumor indications.


Blood | 2010

MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB–dependent lymphoma

Michael Milhollen; Tary Traore; Jennifer Adams-Duffy; Michael P. Thomas; Allison J. Berger; Lenny Dang; Lawrence R. Dick; James J. Garnsey; Erik Koenig; Steven P. Langston; Mark Manfredi; Usha Narayanan; Mark Rolfe; Louis M. Staudt; Teresa A. Soucy; Jie Yu; Julie Zhang; Joseph B. Bolen; Peter G. Smith

MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action. Treatment of ABC DLBCL cells with MLN4924 resulted in rapid accumulation of pIkappaBalpha, decrease in nuclear p65 content, reduction of nuclear factor-kappaB (NF-kappaB) transcriptional activity, and G(1) arrest, ultimately resulting in apoptosis induction, events consistent with potent NF-kappaB pathway inhibition. Treatment of germinal-center B cell-like (GCB) DLBCL cells resulted in an increase in cellular Cdt-1 and accumulation of cells in S-phase, consistent with cells undergoing DNA rereplication. In vivo administration of MLN4924 to mice bearing human xenograft tumors of ABC- and GCB-DLBCL blocked NAE pathway biomarkers and resulted in complete tumor growth inhibition. In primary human tumor models of ABC-DLBCL, MLN4924 treatment resulted in NF-kappaB pathway inhibition accompanied by tumor regressions. This work describes a novel mechanism of targeted NF-kappaB pathway modulation in DLBCL and provides strong rationale for clinical development of MLN4924 against NF-kappaB-dependent lymphomas.


Clinical Cancer Research | 2011

Characterization of Alisertib (MLN8237), an Investigational Small-Molecule Inhibitor of Aurora A Kinase Using Novel In Vivo Pharmacodynamic Assays

Mark Manfredi; Jeffrey A. Ecsedy; Arijit Chakravarty; Lee Silverman; Mengkun Zhang; Kara M. Hoar; Stephen G. Stroud; Wei Chen; Vaishali Shinde; Jessica Huck; Deborah R. Wysong; David A. Janowick; Marc L. Hyer; Patrick J. LeRoy; Rachel E. Gershman; Matthew D. Silva; Melissa Saylor Germanos; Joseph B. Bolen; Christopher F. Claiborne; Todd B. Sells

Purpose: Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays. Experimental Design: We investigated the selectivity of alisertib for AAK and ABK and studied the antitumor and antiproliferative activity of alisertib in vitro and in vivo. Novel assays were used to assess chromosome alignment and mitotic spindle bipolarity in human tumor xenografts using immunofluorescent detection of DNA and alpha-tubulin, respectively. In addition, 18F-3′-fluoro-3′-deoxy-l-thymidine positron emission tomography (FLT-PET) was used to noninvasively measure effects of alisertib on in vivo tumor cell proliferation. Results: Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. In addition, a dose of alisertib that caused tumor stasis, as measured by volume, resulted in a decrease in FLT uptake, suggesting that noninvasive imaging could provide value over traditional measurements of response. Conclusions: Alisertib is a selective and potent inhibitor of AAK. The novel methods of measuring Aurora A pathway inhibition and application of tumor imaging described here may be valuable for clinical evaluation of small-molecule inhibitors. Clin Cancer Res; 17(24); 7614–24. ©2011 AACR.


Molecular Cancer Research | 2010

MLN8054, an Inhibitor of Aurora A Kinase, Induces Senescence in Human Tumor Cells Both In vitro and In vivo

Jessica Huck; Mengkun Zhang; Alice McDonald; Doug Bowman; Kara M. Hoar; Bradley Stringer; Jeffery Ecsedy; Mark Manfredi; Marc L. Hyer

Aurora A kinase is a serine/threonine protein kinase responsible for regulating several mitotic processes including centrosome separation, spindle assembly, and chromosome segregation. Small molecule inhibitors of Aurora A kinase are being pursued as novel anticancer agents, some of which have entered clinical trials. Despite the progress in developing these agents, terminal outcomes associated with Aurora A inhibition are not fully understood. Although evidence exists that Aurora A inhibition leads to apoptosis, other therapeutically relevant cell fates have not been reported. Here, we used the small molecule inhibitor MLN8054 to show that inhibition of Aurora A induces tumor cell senescence both in vitro and in vivo. Treatment of human tumor cells grown in culture with MLN8054 showed a number of morphologic and biochemical changes associated with senescence. These include increased staining of senescence-associated β-galactosidase, increased nuclear and cell body size, vacuolated cellular morphology, upregulation/stabilization of p53, p21, and hypophosphorylated pRb. To determine if Aurora A inhibition induces senescence in vivo, HCT-116 xenograft–bearing animals were dosed orally with MLN8054 for 3 weeks. In the MLN8054-treated animals, increased senescence-associated β-galactosidase activity was detected in tissue sections starting on day 15. In addition, DNA and tubulin staining of tumor tissue showed a significant increase in nuclear and cell body area, consistent with a senescent phenotype. Taken together, this data shows that senescence is a terminal outcome of Aurora A inhibition and supports the evaluation of senescence biomarkers in clinic samples. Mol Cancer Res; 8(3); 373–84


Clinical Cancer Research | 2011

Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies.

Edmund Lee; Michael Fitzgerald; Bret Bannerman; Jill Donelan; Kristen Bano; Jennifer Terkelsen; Daniel P. Bradley; Ozlem Subakan; Matthew D. Silva; Ray Liu; Michael D. Pickard; Zhi Li; Olga Tayber; Ping Li; Paul Hales; Mary Carsillo; Vishala T. Neppalli; Allison Berger; Erik Kupperman; Mark Manfredi; Joseph B. Bolen; Brian Van Ness; Siegfried Janz

Purpose: The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Experimental Design: Both cell line–derived OCI-Ly10 and primary human lymphoma–derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMycCα/Bcl-XL GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc–disseminated model of iMycCα/Bcl-XL was used to determine antitumor activity and effects on osteolytic bone disease. Results: MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMycCα/Bcl-XL GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Conclusions: Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. Clin Cancer Res; 17(23); 7313–23. ©2011 AACR.


Cancer Cell | 2012

Treatment-Emergent Mutations in NAEβ Confer Resistance to the NEDD8-Activating Enzyme Inhibitor MLN4924

Michael Milhollen; Michael Thomas; Usha Narayanan; Tary Traore; Jessica Riceberg; Benjamin S. Amidon; Neil Bence; Joseph B. Bolen; James E. Brownell; Lawrence R. Dick; Huay-Keng Loke; Alice McDonald; Jingya Ma; Mark Manfredi; Todd B. Sells; Xiaofeng Yang; Qing Xu; Erik Koenig; James M. Gavin; Peter G. Smith

MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEβ as the primary mechanism of resistance to MLN4924. Biochemical analyses of NAEβ mutants revealed slower rates of adduct formation and reduced adduct affinity for the mutant enzymes. A compound with tighter binding properties was able to potently inhibit mutant enzymes in cells. These data provide rationales for patient selection and the development of next-generation NAE inhibitors designed to overcome treatment-emergent NAEβ mutations.


The Journal of Nuclear Medicine | 2011

Multimodal Imaging with 18 F-FDG PET and Cerenkov Luminescence Imaging After MLN4924 Treatment in a Human Lymphoma Xenograft Model

Robbie Robertson; Melissa Saylor Germanos; Mark Manfredi; Peter G. Smith; Matthew D. Silva

Cerenkov luminescence imaging (CLI) is an emerging imaging technique that combines aspects of both optical and nuclear imaging fields. The ability to fully evaluate the correlation and sensitivity of CLI to PET is critical to progress this technique further for use in high-throughput screening of pharmaceutical compounds. To achieve this milestone, it must first be established that CLI data correlate to PET data in an in vivo preclinical antitumor study. We used MLN4924, a phase 2 oncology therapeutic, which targets and inhibits the NEDD8-activating enzyme pathway involved in the ubiquitin–proteasome system. We compared the efficacious effects of MLN4924 using PET and Cerenkov luminescence image values in the same animals. Methods: Imaging of 18F-FDG uptake was performed at 5 time points after drug treatment in the subcutaneously implanted diffuse large B-cell lymphoma tumor line OCI-Ly10. Data were acquired with both modalities on the same day, with a 15-min delay between CLI and PET. PET data analysis was performed using percentage injected dose per cubic centimeter of tissue (%ID/cm3), average standardized uptake values, and total glycolytic volume. CLI measurements were radiance, radiance per injected dose (radiance/ID), and total radiant volume. Results: A strong correlation was found between PET total glycolytic volume and CLI total radiant volume (r2 = 0.99) and various PET and CLI analysis methods, with strong correlations found between PET %ID/cm3 and CLI radiance (r2 = 0.83) and CLI radiance/ID (r2 = 0.82). MLN4924 demonstrated a significant reduction in tumor volume after treatment (volume ratio of treated vs. control, 0.114 at day 29). Conclusion: The PET and CLI data presented confirm the correlation and dynamic sensitivity of this new imaging modality. CLI provides a preclinical alternative to expensive PET instrumentation. Future high-throughput studies should provide for quicker turnaround and higher cost-to-return benefits in the drug discovery process.


ACS Medicinal Chemistry Letters | 2015

MLN8054 and Alisertib (MLN8237): Discovery of Selective Oral Aurora A Inhibitors

Todd B. Sells; Ryan Chau; Jeffrey A. Ecsedy; Rachel E. Gershman; Kara M. Hoar; Jessica Huck; David A. Janowick; Vivek J. Kadambi; Patrick J. LeRoy; Matthew Stirling; Stephen G. Stroud; Tricia J. Vos; Deborah R. Wysong; Mengkun Zhang; Suresh K. Balani; Joseph B. Bolen; Mark Manfredi; Christopher F. Claiborne

The Aurora kinases are essential for cell mitosis, and the dysregulation of Aurora A and B have been linked to the etiology of human cancers. Investigational agents MLN8054 (8) and alisertib (MLN8237, 10) have been identified as high affinity, selective, orally bioavailable inhibitors of Aurora A that have advanced into human clinical trials. Alisertib (10) is currently being evaluated in multiple Phase II and III clinical trials in hematological malignancies and solid tumors.


Molecular Cancer Therapeutics | 2012

MLN0905, a Small-Molecule PLK1 Inhibitor, Induces Antitumor Responses in Human Models of Diffuse Large B-cell Lymphoma

Judy Shi; Kerri Lasky; Vaishali Shinde; Bradley Stringer; Mark G. Qian; Debra Liao; Ray Liu; Denise L. Driscoll; Michelle Tighe Nestor; Benjamin S. Amidon; Youlan Rao; Matt O. Duffey; Mark Manfredi; Tricia J. Vos; Natalie D’Amore; Marc Hyer

Diffuse large B-cell lymphoma (DLBCL) is the most common of the non–Hodgkin lymphomas, accounting for up to 30% of all newly diagnosed lymphoma cases. Current treatment options for this disease are effective, but not always curative; therefore, experimental therapies continue to be investigated. We have discovered an experimental, potent, and selective small-molecule inhibitor of PLK1, MLN0905, which inhibits cell proliferation in a broad range of human tumor cells including DLBCL cell lines. In our report, we explored the pharmacokinetic, pharmacodynamic, and antitumor properties of MLN0905 in DLBCL xenograft models grown in mice. These studies indicate that MLN0905 modulates the pharmacodynamic biomarker phosphorylated histone H3 (pHisH3) in tumor tissue. The antitumor activity of MLN0905 was evaluated in three human subcutaneous DLBCL xenograft models, OCI LY-10, OCI LY-19, and PHTX-22L (primary lymphoma). In each model, MLN0905 yielded significant antitumor activity on both a continuous (daily) and intermittent dosing schedule, underscoring dosing flexibility. The antitumor activity of MLN0905 was also evaluated in a disseminated xenograft (OCI LY-19) model to better mimic human DLBCL disease. In the disseminated model, MLN0905 induced a highly significant survival advantage. Finally, MLN0905 was combined with a standard-of-care agent, rituximab, in the disseminated OCI LY-19 xenograft model. Combining rituximab and MLN0905 provided both a synergistic antitumor effect and a synergistic survival advantage. Our findings indicate that PLK1 inhibition leads to pharmacodynamic pHisH3 modulation and significant antitumor activity in multiple DLBCL models. These data strongly suggest evaluating PLK1 inhibitors as DLBCL anticancer agents in the clinic. Mol Cancer Ther; 11(9); 2045–53. ©2012 AACR.

Collaboration


Dive into the Mark Manfredi's collaboration.

Top Co-Authors

Avatar

Peter G. Smith

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Tary Traore

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Bret Bannerman

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengkun Zhang

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Todd B. Sells

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Yu Yang

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Arijit Chakravarty

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Allison Berger

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Ecsedy

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge