Mark McAllister
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark McAllister.
European Journal of Pharmaceutical Sciences | 2014
Edmund S. Kostewicz; Bertil Abrahamsson; Marcus E. Brewster; Joachim Brouwers; James Butler; Sara Carlert; Paul A. Dickinson; Jennifer B. Dressman; René Holm; Sandra Klein; James Mann; Mark McAllister; Mans Minekus; Uwe Muenster; Anette Müllertz; Miriam Verwei; Maria Vertzoni; Werner Weitschies; Patrick Augustijns
Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.
European Journal of Pharmaceutical Sciences | 2014
Christel A. S. Bergström; René Holm; Søren Astrup Jørgensen; Sara B.E. Andersson; Per Artursson; Stefania Beato; Anders Borde; Karl Box; Marcus E. Brewster; Jennifer B. Dressman; Kung-I. Feng; Gavin Halbert; Edmund S. Kostewicz; Mark McAllister; Uwe Muenster; Julian Thinnes; Robert Taylor; Anette Müllertz
Preformulation measurements are used to estimate the fraction absorbed in vivo for orally administered compounds and thereby allow an early evaluation of the need for enabling formulations. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the pharmaceutical profiling methods available, with focus on in silico and in vitro models typically used to forecast active pharmaceutical ingredients (APIs) in vivo performance after oral administration. An overview of the composition of human, animal and simulated gastrointestinal (GI) fluids is provided and state-of-the art methodologies to study API properties impacting on oral absorption are reviewed. Assays performed during early development, i.e. physicochemical characterization, dissolution profiles under physiological conditions, permeability assays and the impact of excipients on these properties are discussed in detail and future demands on pharmaceutical profiling are identified. It is expected that innovative computational and experimental methods that better describe molecular processes involved in vivo during dissolution and absorption of APIs will be developed in the OrBiTo. These methods will provide early insights into successful pathways (medicinal chemistry or formulation strategy) and are anticipated to increase the number of new APIs with good oral absorption being discovered.
European Journal of Pharmaceutical Sciences | 2014
Hans Lennernäs; Leon Aarons; Patrick Augustijns; Stefania Beato; Michael B. Bolger; Karl Box; Marcus E. Brewster; James Butler; Jennifer B. Dressman; René Holm; K Julia Frank; R Kendall; Peter Langguth; J Sydor; Anders Lindahl; Mark McAllister; Uwe Muenster; Anette Müllertz; Krista Ojala; Xavier Pepin; Christos Reppas; Amin Rostami-Hodjegan; Miriam Verwei; Werner Weitschies; Clive G. Wilson; C Karlsson; Bertil Abrahamsson
OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.
European Journal of Pharmaceutical Sciences | 2017
Adam S. Darwich; Alison Margolskee; Xavier Pepin; Leon Aarons; Aleksandra Galetin; Amin Rostami-Hodjegan; Sara Carlert; Maria Hammarberg; Constanze Hilgendorf; Pernilla Johansson; Eva Karlsson; Dónal Murphy; Christer Tannergren; Helena Thörn; Mohammed Yasin; Florent Mazuir; Olivier Nicolas; Sergej Ramusovic; Christine Xu; Shriram M. Pathak; Timo Korjamo; Johanna Laru; Jussi Malkki; Sari Pappinen; Johanna Tuunainen; Jennifer B. Dressman; Simone Hansmann; Edmund S. Kostewicz; Handan He; Tycho Heimbach
&NA; Three Physiologically Based Pharmacokinetic software packages (GI‐Sim, Simcyp® Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded “bottom‐up” anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (Foral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foral was also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. Foral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water‐soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug‐specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data “as is” in this blinded bottom‐up prediction approach. Graphical Abstract Figure. No caption available.
European Journal of Pharmaceutical Sciences | 2017
Alison Margolskee; Adam S. Darwich; Xavier Pepin; Leon Aarons; Aleksandra Galetin; Amin Rostami-Hodjegan; Sara Carlert; Maria Hammarberg; Constanze Hilgendorf; Pernilla Johansson; Eva Karlsson; Dónal Murphy; Christer Tannergren; Helena Thörn; Mohammed Yasin; Florent Mazuir; Olivier Nicolas; Sergej Ramusovic; Christine Xu; Shriram M. Pathak; Timo Korjamo; Johanna Laru; Jussi Malkki; Sari Pappinen; Johanna Tuunainen; Jennifer B. Dressman; Simone Hansmann; Edmund S. Kostewicz; Handan He; Tycho Heimbach
&NA; Orally administered drugs are subject to a number of barriers impacting bioavailability (Foral), causing challenges during drug and formulation development. Physiologically‐based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI‐Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm‐institution‐software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two‐fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, Foral and relative AUC (Frel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large‐scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7‐fold differences in AFE between SimCYP and GI‐Sim, however average performance was relatively consistent across the three software platforms. Graphical abstract Figure. No caption available.
European Journal of Pharmaceutical Sciences | 2017
Alison Margolskee; Adam S. Darwich; Xavier Pepin; Shriram M. Pathak; Michael B. Bolger; Leon Aarons; Amin Rostami-Hodjegan; Jonas Angstenberger; Franziska Graf; Loic Laplanche; Thomas J. J. Müller; Sara Carlert; Pankaj Daga; Dónal Murphy; Christer Tannergren; Mohammed Yasin; Susanne Greschat-Schade; Wolfgang Mück; Uwe Muenster; Dorina van der Mey; Kerstin J. Frank; Richard Lloyd; Lieve Adriaenssen; Jan Bevernage; Loeckie de Zwart; Dominique Swerts; Christophe Tistaert; An Van den Bergh; Achiel Van Peer; Stefania Beato
&NA; Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically‐based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large‐scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large‐scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40–4.58), human blood‐to‐plasma ratio of 0.62 (0.57–0.71), and fraction unbound in plasma of 0.05 (0.01–0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9 L/h (interquartile range: 11.6–43.6 L/h; n = 23), volume of distribution was 80.8 L (54.5–239 L; n = 23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203–0.724; n = 22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large‐scale evaluation of the PBPK approach to predicting oral biopharmaceutics. Graphical abstract Figure. No caption available.
Journal of Pharmacy and Pharmacology | 2018
Angela Effinger; Caitriona M. O'Driscoll; Mark McAllister; Nikoletta Fotaki
Drug product performance in patients with gastrointestinal (GI) diseases can be altered compared to healthy subjects due to pathophysiological changes. In this review, relevant differences in patients with inflammatory bowel diseases, coeliac disease, irritable bowel syndrome and short bowel syndrome are discussed and possible in vitro and in silico tools to predict drug product performance in this patient population are assessed.
Computer Methods and Programs in Biomedicine | 2017
Kristin Lacy-Jones; Philip Hayward; Steve Andrews; Ian Gledhill; Mark McAllister; Bertil Abrahamsson; Amin Rostami-Hodjegan; Xavier Pepin
The OrBiTo IMI project was designed to improve the understanding and modelling of how drugs are absorbed. To achieve this 13 pharmaceutical companies agreed to share biopharmaceutics drug properties and performance data, as long as they were able to hide certain aspects of their dataset if required. This data was then used in simulations to test how three in silico Physiological Based Pharmacokinetic (PBPK) tools performed. A unique database system was designed and implemented to store the drug data. The database system was unique, in that it had the ability to make different sections of a dataset visible or hidden depending on the stage of the project. Users were also given the option to hide identifying API attributes, to help prevent identification of project members from previously published data. This was achieved by applying blinding strategies to data parameters and the adoption of a unique numbering system. An anonymous communication tool was proposed to exchange comments about data, which enabled its curation and evolution. This paper describes the strategy adopted for numbering and blinding of the data, the tools developed to gather and search data as well as the tools used for communicating around the data with the aim of publicising the approach for other pre-competitive research between organisations.
Journal of Pharmacy and Pharmacology | 2018
Christina Pentafragka; Mira Symillides; Mark McAllister; Jennifer B. Dressman; Maria Vertzoni; Christos Reppas
Using the type of meal and dosing conditions suggested by regulatory agencies as a basis, this review has two specific objectives: first, to summarize our understanding on the impact of food intake on luminal environment and drug product performance and second, to summarize the usefulness and limitations of available in vitro and in silico methodologies for the evaluation of drug product performance after food intake.
European Journal of Pharmaceutics and Biopharmaceutics | 2018
Cord J. Andreas; J. Rosenberger; James Butler; Patrick Augustijns; Mark McAllister; Bertil Abrahamsson; Jennifer B. Dressman
The EU research initiative OrBiTo (oral biopharmaceutics tools) involving partners from academia, pharmaceutical industry, small medium enterprises and a regulatory agency was launched with the goal of improving tools to predict the absorption of drugs in humans and thereby accelerating the formulation development process. The OrBiTo project was divided into four work packages (WP), with WP2 focusing on characterization of drug formulations. The present work introduces the OrBiTo WP2 Decision Tree, which is designed to assist the investigator in choosing the most appropriate in vitro methods for optimizing the oral formulation design and development process. The WP2 Decision Tree consists of four stages to guide the investigator. At the first stage, the investigator is asked to choose the formulation type of interest. At the second stage, the investigator is asked to identify which type of equipment (compendial/modified/noncompendial) is preferred/available. At the third stage, characteristics of the active pharmaceutical ingredient (API) are evaluated and in the fourth stage of the decision tree, suitable experimental protocols are recommended. A link to the living Decision Tree document is provided, and we now invite the pharmaceutical sciences community to apply it to current research and development projects and offer suggestions for improvement and expansion.