Mark N. Gasson
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark N. Gasson.
International Journal of Neural Systems | 2010
Defeng Wu; Kevin Warwick; Zi Ma; Mark N. Gasson; Jonathan George Burgess; Song Pan; Tipu Z. Aziz
Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinsons disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18-24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinsons disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the networks performance, electromyographic (EMG) signals from the patients forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.
British Journal of Occupational Therapy | 2009
Peter J. Kyberd; Alessio Murgia; Mark N. Gasson; Tristan Tjerks; Cheryl Metcalf; Paul Chappell; Kevin Warwick; Sian Lawson; Tom Barnhill
The Southampton Hand Assessment Procedure (SHAP) was devised to assess quantitatively the functional range of injured and healthy adult hands. It was designed to be a practical tool for use in a busy clinical setting; thus, it was made simple to use and easy to interpret. This paper describes four examples of its use: before and after a surgical procedure, to observe the impact of an injury, use with prostheses, and during recovery following a fracture. The cases show that the SHAP is capable of monitoring progress and recovery, identifying functional abilities in prosthetic hands and comparing the capabilities of different groups of injuries.
information security conference | 2007
Eleni Kosta; Martin Meints; Marit Hansen; Mark N. Gasson
The European Union sees the introduction of the ePassport as a step towards rendering passports more secure against forgery while facilitating more reliable border controls. In this paper we take an interdisciplinary approach to the key security and privacy issues arising from the use of ePassports. We further analyse how European data protection legislation must be respected and what additional security measures must be integrated in order to safeguard the privacy of the EU ePassport holder.
systems man and cybernetics | 2011
Mark N. Gasson; Eleni Kosta; Denis Royer; Martin Meints; Kevin Warwick
There is growing interest in the ways in which the location of a person can be utilized by new applications and services. Recent advances in mobile technologies have meant that the technical capability to record and transmit location data for processing is appearing in off-the-shelf handsets. This opens possibilities to profile people based on the places they visit, people they associate with, or other aspects of their complex routines determined through persistent tracking. It is possible that services offering customized information based on the results of such behavioral profiling could become commonplace. However, it may not be immediately apparent to the user that a wealth of information about them, potentially unrelated to the service, can be revealed. Further issues occur if the user agreed, while subscribing to the service, for data to be passed to third parties where it may be used to their detriment. Here, we report in detail on a short case study tracking four people, in three European member states, persistently for six weeks using mobile handsets. The GPS locations of these people have been mined to reveal places of interest and to create simple profiles. The information drawn from the profiling activity ranges from intuitive through special cases to insightful. In this paper, these results and further extensions to the technology are considered in light of European legislation to assess the privacy implications of this emerging technology.
computational intelligence and security | 2010
Jawish Hameed; Ian Harrison; Mark N. Gasson; Kevin Warwick
This paper explores a novel tactile human-machine interface based on the controlled stimulation of mechanoreceptors by a subdermal magnetic implant manipulated through an external electromagnet. The selection of a suitable implant magnet and implant site is discussed and an external interface for manipulating the implant is described. The paper also reports on the basic properties of such an interface, including magnetic field strength sensitivity and frequency sensitivity obtained through experimentation on two participants. Finally, the paper presents two practical application scenarios for the interface.
IEEE Transactions on Education | 2010
Richard Mitchell; Kevin Warwick; Will N. Browne; Mark N. Gasson; Jim Wyatt
Cybernetics is a broad subject, encompassing many aspects of electrical, electronic, and computer engineering, which suffers from a lack of understanding on the part of potential applicants and teachers when recruiting students. However, once the engineering values, fascinating science, and pathways to rewarding, diverse careers are communicated, appropriate students can be very interested in enrolling. At the University of Reading, Reading, U.K., a key route for outreach to prospective students has been achieved through the use of robots in interactive talks at schools, competitions (often funded by Public Understanding of Science projects), a collectable fortnightly magazine, exhibitions in museums, open days at the University, and appearances in the media. This paper identifies the interactive engagement, anthropomorphic acceptability, and inspirational nature of robots as being key to their successful use in outreach activities. The statistical results presented show that the continued popularity of degrees at Reading in cybernetics, electronic engineering, and robotics over the last 20 years is in part due to the outreach activities to schools and the general public.
robot and human interactive communication | 2002
Mark N. Gasson; Benjamin Hutt; I. Goodhew; Peter J. Kyberd; Kevin Warwick
This paper presents an application study into the use of a bi-directional link with the human nervous system by means of an implant, positioned through neurosurgery. Various applications are described including the interaction of neural signals with an articulated hand, a group of cooperative autonomous robots and to control the movement of a mobile platform. The microelectrode array implant itself is described in detail. Consideration is given to a wider range of possible robot mechanisms, which could interact with the human nervous system through the same technique.
systems, man and cybernetics | 2005
Kevin Warwick; Mark N. Gasson; Benjamin Hutt; I. Goodhew
In this paper an attempt is described to increase the range of human sensory capabilities by means of implant technology. The key aim is to create an additional sense by feeding signals directly to the human brain, via the nervous system rather than via a presently operable human sense. Neural implant technology was used to directly interface a human nervous system with a computer in a one off trial. The output from active ultrasonic sensors was then employed to directly stimulate the human nervous system. An experimental laboratory set up was used as a test bed to assess the usefulness of this sensory addition.
Parkinsonism & Related Disorders | 2010
Jonathan George Burgess; Kevin Warwick; Virginie F. Ruiz; Mark N. Gasson; Tipu Z. Aziz; John-Stuart Brittain; John F. Stein
Local field potential (LFP) and Electromyographic (EMG) signals were recorded from 12 Parkinsonian patients with tremor-dominant symptoms as they performed passive and voluntary movements. The LFP signals were categorised into episodes of tremorous and atremorous activity (identified through EMG power spectra), then divided into delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) frequency bands. Modulation of LFP oscillatory activity in these frequency bands were compared between the subthalamic nucleus (STN) and the globus pallidus internus (GPi) to determine if differential tremor-related characteristics were identifiable for either target. Our results suggest that such local characteristic activity is identifiable in the STN, and thus could be a target for initial development of a closed-loop demand driven stimulator device which capitalises on such activity to trigger stimulation, even during voluntary movement activity.
european conference on computer vision | 2004
Kevin Warwick; Mark N. Gasson
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.