Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Niedre is active.

Publication


Featured researches published by Mark Niedre.


Journal of Applied Physiology | 2008

Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging

Jodi Haller; Damon Hyde; Nikolaos C. Deliolanis; Ruben de Kleine; Mark Niedre; Vasilis Ntziachristos

The ability to visualize molecular processes and cellular regulators of complex pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), or adult respiratory distress syndrome (ARDS), would aid in the diagnosis, differentiation, therapy assessment and in small animal-based drug-discovery processes. Herein we report the application of normalized transillumination and fluorescence molecular tomography (FMT) for the noninvasive quantitative imaging of the mouse lung in vivo. We demonstrate the ability to visualize and quantitate pulmonary response in a murine model of LPS-induced airway inflammation. Twenty-four hours prior to imaging, BALB/c female mice were injected via tail vein with 2 nmol of a cathepsin-sensitive activatable fluorescent probe (excitation: 750 nm; emission: 780 nm) and 2 nmol of accompanying intravascular agent (excitation: 674 nm; emission: 694 nm). Six hours later, the mice were anesthetized with isoflurane and administered intranasal LPS in sterile 0.9% saline in 25 microl aliquots (one per nostril). Fluorescence molecular imaging revealed the in vivo profile of cysteine protease activation and vascular distribution within the lung typifying the inflammatory response to LPS insult. Results were correlated with standard in vitro laboratory tests (Western blot, bronchoalveolar lavage or BAL analysis, immunohistochemistry) and revealed good correlation with the underlying activity. We demonstrated the capacity of fluorescence tomography to noninvasively and longitudinally characterize physiological, cellular, and subcellular processes associated with inflammatory disease burden in the lung. The data presented herein serve to further evince fluorescence molecular imaging as a technology highly appropriate for the biomedical laboratory.


Photochemistry and Photobiology | 2011

The Influence of Oxygen Depletion and Photosensitizer Triplet-state Dynamics During Photodynamic Therapy on Accurate Singlet Oxygen Luminescence Monitoring and Analysis of Treatment Dose Response

Mark T. Jarvi; Mark Niedre; Michael S. Patterson; Brian C. Wilson

To date, singlet oxygen (1O2) luminescence (SOL) detection was predictive of photodynamic therapy (PDT) treatment responses both in vitro and in vivo, but accurate quantification is challenging. In particular, the early and strongest part of the time‐resolved signal (500–2000 ns) is difficult to separate from confounding sources of luminescence and system noise, and so is normally gated out. However, the signal dynamics change with oxygen depletion during PDT, so that this time gating biases the 1O2 measurements. Here, the impact of gating was investigated in detail, determining the rate constants from SOL and direct pO2 measurements during meso‐tetra(hydroxyphenyl)chlorin (mTHPC)‐mediated PDT of cells in vitro under well‐controlled conditions. With these data as input, numerical simulations were used to examine PDT and SOL dynamics, and the influence of various time gates on cumulative SOL signals. It is shown that gating can underestimate the SOL at early treatment time points by ∼40% and underestimate the cumulative SOL signal by 20–25%, representing significant errors. In vitro studies with both mTHPC and aminolevulinic acid‐photosensitizer protoporphyrin IX demonstrate that rigorous analysis of SOL signal kinetics is then crucial in order to use SOL as an accurate and quantitative PDT dose metric.


Optics Letters | 2010

Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons

Mark Niedre; Vasilis Ntziachristos

The highly diffuse nature of light propagation in biological tissue is a major challenge for obtaining high-fidelity fluorescence tomographic images. In this work we investigated the use of time-gated detection of early-arriving photons for reducing the effects of light scatter in mice relative to quasi-cw photons. When analyzing sinographic representations of the measured data, it was determined that early photons allowed a reduction in the measured FWHM of fluorescent targets by a factor of approximately 2-3, yielding a significant improvement in the tomographic image reconstruction quality.


Journal of Biomedical Optics | 2010

Experimental measurement of time-dependant photon scatter for diffuse optical tomography

Niksa Valim; James Brock; Mark Niedre

Time-resolved measurement of early arriving photons through diffusive media has been shown to effectively reduce the high degree of light scatter in biological tissue. However, the experimentally achievable reduction in photon scatter and the impact of time-gated detection on instrument noise performance is not well understood. We measure time-dependent photon density sensitivity functions (PDSFs) between a pulsed laser source and a photomultiplier tube operating in time-correlated single-photon-counting mode. Our data show that with our system, measurement of early arriving photons reduces the full width half maximum of PDSFs on average by about 40 to 60% versus quasicontinuous wave photons over a range of experimental conditions similar to those encountered in small animal tomography, corresponding to a 64 to 84% reduction in PDSF volume. Factoring in noise considerations, the optimal operating point of our instrument is determined to be about the 10% point on the rising edge of the transmitted intensity curve. Time-dependent Monte Carlo simulations and the time-resolved diffusion approximation are used to model photon propagation and are evaluated for agreement with experimental data.


Biomedical Optics Express | 2011

Hybrid use of early and quasi-continuous wave photons in time-domain tomographic imaging for improved resolution and quantitative accuracy

Zhi Li; Mark Niedre

Measurement of early-photons (EPs) from a pulsed laser source has been shown to improve imaging resolution versus continuous wave (CW) systems in diffuse optical tomography (DOT) and fluorescence mediated tomography (FMT). However, EP systems also have reduced noise performance versus CW systems since EP measurements require temporal rejection of large numbers of transmitted photons. In this work, we describe a ‘hybrid data set’ (HDS) image reconstruction approach, the goal of which was to produce a final image that retained the resolution and noise advantages of EP and CW data sets, respectively. Here, CW data was first reconstructed to produce a quantitatively accurate ‘initial guess’ intermediate image, and then this was refined with EP data to yield a higher resolution final image. We performed a series of studies with simulated data to test the resolution, quantitative accuracy and detection sensitivity of the approach. We showed that in principle it was possible to produce final images that retained the bulk of the resolution and quantitative accuracy of EP and CW images, respectively, but the HDS approach did not improve the instrument sensitivity compared to EP data alone.


International Journal of Radiation Oncology Biology Physics | 2015

Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy.

Rajiv Kumar; Jodi Belz; Stacey Markovic; Tej Jadhav; William H. Fowle; Mark Niedre; Robert A. Cormack; Mike Makrigiorgos; Srinivas Sridhar

PURPOSE In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.


Cytometry Part A | 2013

A Computer Vision Approach to Rare Cell In Vivo Fluorescence Flow Cytometry

Stacey Markovic; Binlong Li; Vivian Pera; Mario Sznaier; Octavia I. Camps; Mark Niedre

Noninvasive enumeration of rare circulating cell populations in small animals is of great importance in many areas of biomedical research. In this work, we describe a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently‐labeled cells from multiple large blood vessels in the ear of a mouse. This imaging system uses a 660 nm laser and a high sensitivity electron‐multiplied charge coupled device camera (EMCCD) to acquire fluorescence image sequences from relatively large (∼5 × 5 mm2) imaging areas. The primary technical challenge was developing an automated method for identifying and tracking rare cell events in image sequences with substantial autofluorescence and noise content. To achieve this, we developed a two‐step image analysis algorithm that first identified cell candidates in individual frames, and then merged cell candidates into tracks by dynamic analysis of image sequences. The second step was critical since it allowed rejection of >97% of false positive cell counts. Overall, our computer vision IVFC (CV‐IVFC) approach allows single‐cell detection sensitivity at estimated concentrations of 20 cells/mL of peripheral blood. In addition to simple enumeration, the technique recovers the cells trajectory, which in the future could be used to automatically identify, for example, in vivo homing and docking events.


Journal of Biomedical Optics | 2012

Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo

Eric Zettergren; Dwayne A. L. Vickers; Judith Runnels; Shashi K. Murthy; Charles P. Lin; Mark Niedre

Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches.


Optics Letters | 2013

Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media

Ying Mu; Niksa Valim; Mark Niedre

We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.


Biomedical Optics Express | 2015

Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner.

Ying Mu; Mark Niedre

Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT.

Collaboration


Dive into the Mark Niedre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivian Pera

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jodi Belz

Northeastern University

View shared research outputs
Top Co-Authors

Avatar

Rajiv Kumar

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Cormack

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Niksa Valim

Northeastern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge