Mark O. Gessner
Swiss Federal Institute of Aquatic Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark O. Gessner.
Biological Reviews | 2006
David Dudgeon; Angela H. Arthington; Mark O. Gessner; Zen’ichiro Kawabata; Duncan Knowler; Christian Lévêque; Robert J. Naiman; Anne-Hélène Prieur-Richard; Doris Soto; Melanie L. J. Stiassny; Caroline A Sullivan
Freshwater biodiversity is the over‐riding conservation priority during the International Decade for Action ‐‘Water for Life’ ‐ 2005 to 2015. Fresh water makes up only 0.01% of the Worlds water and approximately 0.8 % of the Earths surface, yet this tiny fraction of global water supports at least 100 000 species out of approximately 1.8 million ‐ almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the ‘Water for Life’ decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as ‘receivers’ of land‐use effluents, and the problems posed by endemism and thus non‐substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and ‐ in the case of migrating aquatic fauna ‐ downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade‐offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long‐term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management ‐ one that has been appropriately termed ‘reconciliation ecology’.
Trends in Ecology and Evolution | 2010
Mark O. Gessner; Christopher M. Swan; Christian K. Dang; Brendan G. McKie; Richard D. Bardgett; Diana H. Wall; Stephan Hättenschwiler
Over 100 gigatons of terrestrial plant biomass are produced globally each year. Ninety percent of this biomass escapes herbivory and enters the dead organic matter pool, thus supporting complex detritus-based food webs that determine the critical balance between carbon mineralization and sequestration. How will changes in biodiversity affect this vital component of ecosystem functioning? Based on our analysis of concepts and experiments of leaf decomposition in forest floors and streams, we suggest that changes in species diversity within and across trophic levels can significantly alter decomposition. This happens through various mechanisms that are broadly similar in forest floors and streams. Differences in diversity effects between these systems relate to divergent habitat conditions and evolutionary trajectories of aquatic and terrestrial decomposers.
Ecology | 2002
Mäggi Hieber; Mark O. Gessner
Linking species and ecosystems is currently one of the great challenges in ecology. To this end, we assess here the contributions of bacteria, fungi, and detritivorous invertebrates (shredders) to leaf litter breakdown, a key ecosystem-level process. We enclosed alder (Alnus glutinosa) and willow (Salix fragilis) leaves in coarse-mesh bags (5 g dry mass), placed them in a stream during peak leaf fall, and retrieved them periodically to determine leaf mass remaining and the biomass of leaf-associated organisms. Shredder biomass was derived from numbers and length–mass relationships, bacterial numbers and biomass were determined by epifluorescence microscopy, and fungal biomass was measured as ergosterol. In addition, conidial production of aquatic hyphomycetes was determined. Leaves decomposed rapidly with exponential breakdown coefficients k of 0.035 d−1 (alder) and 0.027 d−1 (willow). Leaves were also quickly colonized within the first 4 wk of decomposition, when shredder biomass reached 263 and 141 mg d...
Ecology | 1994
Mark O. Gessner; Eric Chauvet
Breakdown of seven leaf species covering a broad range of litter qualities (lignin: 7-31% of leaf dry mass; tannin: 0.0-6.7%; nitrogen: 0.5-2.6%; phosphorus: 0.0 17- 0.094%) and dynamics of fungal biomass and reproductive activity were studied in a softwater mountain stream. Litter breakdown proceeded at exponential rates k ranging from 0.0042 d-l (evergreen oak) to 0.0515 d-l (ash). Fungal colonization of litter was generally rapid, with the fungus-specific indicator molecule ergosterol increasing from initially negligible concentrations to 375-859 pug/g of detrital mass. Using species-specific factors relating ergosterol concentrations to mycelial dry mass, maximum fungal biomass associated with litter was estimated as 61-155 mg/g of total system mass. Minimum estimates of net mycelial production during active growth varied between 0.3 and 3.8 mg g-I d-l, and maximum sporulation rates of aquatic hyphomycetes ranged from 760 to 7500 conidia mg- I d-l. Initially, reproductive activity was largely synchronized with increases in ergosterol concentrations, but it declined dramatically after peak sporulation rates were reached, whereas ergosterol concentrations levelled off or decreased at consid- erably slower rates. Periods of highest fungal productivity were thus limited to an initial breakdown stage of 2-8 wk. Strong correlations were found between the exponential breakdown coefficient and each of three parameters reflecting fungal activity in leaf litter, that is, maximum ergosterol concentration (P = 0.002, r = 0.96), net mycelial production (P = 0.02, r = 0.92), and sporulation rate (P < 0.001, r = 0.99). The initial lignin content of leaves was also significantly correlated with the rate constant k (P = 0.02, r = -0.83), suggesting that lignin was the primary factor determining litter quality and thus breakdown rate. The correlation was even stronger when data were logarithmically transformed (P < 0.01, r = -0.95). Tannin concentration was significantly correlated with k only when two high-lignin species were excluded from the analysis (P = 0.19, r = -0.56 compared with P = 0.05, r = -0.88), while initial concentrations of phosphorus (P = 0.17, r = 0.58) and particularly nitrogen (P = 0.82, r = 0.06) were poor predictors of litter decomposability. These results suggest that the initial lignin content of leaves controlled litter breakdown rate through a kinetic limitation of carbon sources for saprotrophic microfungi. The de- composer activity of these organisms, in turn, would then have governed breakdown rates. In doing this, fungi produced substantial amounts of both mycelial and conidial biomass that was potentially available to higher trophic levels of the food web.
Oikos | 1999
Mark O. Gessner; Eric Chauvet; Michael Dobson
Leaf litter breakdown, a critical ecosystem level process in streams and other aquatic environments , has been conceptualized using models borrowed from terrestrial systems. We argue that current views of the process in fresh waters need to be conceptually improved. Specifically, we think the idea that breakdown proceeds in three distinct temporal stages (leaching, conditioning, fragmentation) has been over emphasized. Leaching, the massive loss of soluble leaf components within 24 h after immersion, is generally considered to constitute a well-defined first stage. Recent evidence suggests, however, that the initial solute losses are largely an effect of the un natural drying procedures to which experimental leaves are normally subjected. Fresh leaf litter does lose solutes when immersed,but gradually throughout the breakdown process rather than instantly upon wetting. Conditioning, the second breakdown stage, describes the enhancement of leaf palatability for detritivores by microbial colonization, and is thus ultimately targeted towards a group of organisms (which contribute to litter degradation) rather than addressing the breakdown process per se. Furthermore,conditioning implies a key role for detritivorous invertebrates and underrates the established direct degradative activity of microbial decomposers. If, thus, leaching and conditioning are not generally useful operators to describe portions of the litter breakdown process in freshwaters, the traditional concept, which emphasises leaching, conditioning and fragmentation as three sequential stages, loses much of its appeal. Consequently, we propose a new conceptual model, in which the coincidence and interplay of various subprocesses of litter breakdown is more strongly recognized. In this model, we propose to view the process in terms of the products of litter breakdown-as a complement to the usual perspective which focuses on litter mass loss. Six primary breakdown products are considered : bacterial, fungal and shredder biomass; dissolved organic matter; fine-particulate organic matter; and inorganic mineralization products such as CO2, NH+ and PO3-. We present a scheme illustrating the hypothesized formation of these products throughout breakdown. However, to improve understanding of the process, application of the proposed conceptual framework in experimental work is necessary.
Ecological Applications | 2002
Mark O. Gessner; Eric Chauvet
Assessment of the condition of ecosystems is a critical prerequisite for alleviating effects of the multiple anthropogenic stresses imposed on them. For stream ecosystems, a multitude of approaches has been proposed for this purpose. However, they all rest on the assessment of structural attributes, even though it is generally recognized that adequate characterization of ecosystems requires information on both structure (pattern) and function (process). Therefore, we propose a complementary approach to stream assessment based on evaluating ecosystem level processes. Leaf litter breakdown is a prime candidate to consider in this context. This is because of the pivotal role that allochthonous litter plays in streams, the demonstrated effects of anthropogenic perturbations on litter breakdown, and the relative ease of implementation. Leaf breakdown is governed by a variety of internal and external factors that complicate the partitioning of effects due to anthropogenic stress and natural variability (background noise), thus potentially limiting the sensitivity and robustness of litter breakdown assays. However, internal regulation factors can be controlled by standardizing assessment procedures, while variability due to external factors can be accounted for by stream classification and/or a comparative approach (e.g., downstream-upstream comparisons). Composite parameters such as ratios of break- down rates in fine-mesh and coarse-mesh bags may further increase the power of litter breakdown assays. Analyses may also be extended to include both leaf-associated decomposer assemblages (i.e., structural measures) and processes (i.e., additional functional measures). Significant efforts are required for developing standard assessment schemes as refined as extant procedures based on structural stream attributes (e.g., structure of macroinvertebrate assemblages). These efforts are nevertheless worthwhile in view of the new dimension that is added to current assessment procedures when functional elements are incorporated.
Science | 2012
Guy Woodward; Mark O. Gessner; Paul S. Giller; Vladislav Gulis; Sally Hladyz; Antoine Lecerf; Björn Malmqvist; Brendan G. McKie; Scott D. Tiegs; Helen Cariss; Michael Dobson; Arturo Elosegi; Verónica Ferreira; Manuel A. S. Graça; Tadeusz Fleituch; Jean O. Lacoursière; Marius Nistorescu; Jesús Pozo; Geta Rîşnoveanu; Markus Schindler; Angheluta Vadineanu; Lena B. M. Vought; Eric Chauvet
Reading the Leaves Excess inputs of nutrients—a type of pollution known as eutrophication—threatens biodiversity and water quality in rivers and streams. Woodward et al. (p. 1438; see the Perspective by Palmer and Febria) studied how one key ecosystem process—leaf-litter decomposition—responds to eutrophication across a large nutrient pollution gradient in 100 European streams. Leaf breakdown was stimulated by low to moderate nutrient concentrations but was inhibited at high rates of nutrient loading. Leaf-litter breakdown rates across 100 European streams offer insights into ecosystem health during eutrophication. Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
BioScience | 2004
Alan P. Covich; Melanie C. Austen; Felix Bärlocher; Eric Chauvet; Bradley J. Cardinale; Catherine L. Biles; Olivier Dangles; Martin Solan; Mark O. Gessner; Bernhard Statzner; Brian Moss
Abstract Empirical studies investigating the role of species diversity in sustaining ecosystem processes have focused primarily on terrestrial plant and soil communities. Eighteen representative studies drawn from post-1999 literature specifically examined how changes in biodiversity affect benthic ecosystem processes. Results from these small-scale, low-diversity manipulative studies indicate that the effects of changes in biodiversity (mostly synonymous with local species richness) are highly variable over space and time and frequently depend on specific biological traits or functional roles of individual species. Future studies of freshwater and marine ecosystems will require the development of new experimental designs at larger spatial and temporal scales. Furthermore, to successfully integrate field and laboratory studies, the derivation of realistic models and appropriate experiments will require approaches different from those already used in terrestrial systems.
Ecology Letters | 2005
Christian K. Dang; Eric Chauvet; Mark O. Gessner
There is compelling evidence that losses in plant diversity can alter ecosystem functioning, particularly by reducing primary production. However, impacts of biodiversity loss on decomposition, the complementary process in the carbon cycle, are highly uncertain. By manipulating fungal decomposer diversity in stream microcosm experiments we found that rates of litter decomposition and associated fungal spore production are unaffected by changes in decomposer diversity under benign and harsher environmental conditions. This result calls for caution when generalizing outcomes of biodiversity experiments across systems. In contrast to their magnitude, the variability of process rates among communities increased when species numbers were reduced. This was most likely caused by a portfolio effect (i.e. statistical averaging), with the uneven species distribution typical of natural communities tending to weaken that effect. Curbing species extinctions to maintain ecosystem functioning thus can be important even in situations where process rates are unaffected.
Ecology | 2009
Christian K. Dang; Markus Schindler; Eric Chauvet; Mark O. Gessner
Diel temperature oscillations are a nearly ubiquitous phenomenon, with amplitudes predicted to change along with mean temperatures under global-warming scenarios. Impact assessments of global warming have largely disregarded diel temperature oscillations, even though key processes in ecosystems, such as decomposition, may be affected. We tested the effect of a 5 degrees C temperature increase with and without diel oscillations on litter decomposition by fungal communities in stream microcosms. Five temperature regimes with identical thermal sums (degree days) were applied: constant 3 degrees and 8 degrees C; diel temperature oscillations of 5 degrees C around each mean; and oscillations of 9 degrees C around 8 degrees C. Temperature oscillations around 8 degrees C (warming scenario), but not 3 degrees C (ambient scenario), accelerated decomposition by 18% (5 degrees C oscillations) and 31% (9 degrees C oscillations), respectively, compared to the constant temperature regime at 8 degrees C. Community structure was not affected by oscillating temperatures, although the rise in mean temperature from 3 degrees to 8 degrees C consistently shifted the relative abundance of species. A simple model using temperature-growth responses of the dominant fungal decomposers accurately described the experimentally observed pattern, indicating that the effect of temperature oscillations on decomposition in our warming scenario was caused by strong curvilinear responses of species to warming at low temperature, particularly of the species becoming most abundant at 8 degrees C (Tetracladium marchalianum). These findings underscore the need to consider species-specific temperature characteristics in concert with changes in communities when assessing consequences of global warming on ecosystem processes.
Collaboration
Dive into the Mark O. Gessner's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputs