Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark P. Jedrychowski is active.

Publication


Featured researches published by Mark P. Jedrychowski.


Nature | 2012

A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Nature Neuroscience | 2014

Identification of a unique TGF-β–dependent molecular and functional signature in microglia

Oleg Butovsky; Mark P. Jedrychowski; Craig S. Moore; Ron Cialic; Amanda J. Lanser; Galina Gabriely; Thomas Koeglsperger; Ben Dake; Pauline M. Wu; Camille E. Doykan; Zain Fanek; LiPing Liu; Zhuoxun Chen; Jeffrey D. Rothstein; Richard M. Ransohoff; Steven P. Gygi; Jack P. Antel; Howard L. Weiner

Microglia are myeloid cells of the CNS that participate both in normal CNS function and in disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia versus myeloid and other immune cells. Of the 239 genes, 106 were enriched in microglia as compared with astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS, and was also observed in human microglia. We found that TGF-β was required for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia and that microglia were absent in the CNS of TGF-β1–deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling and provide insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.


Cell | 2014

Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis.

Rajesh R. Rao; Jonathan Z. Long; James P. White; Katrin J. Svensson; Jesse Lou; Isha Lokurkar; Mark P. Jedrychowski; Jorge L. Ruas; Christiane D. Wrann; James C. Lo; Donny M. Camera; Jenn Lachey; Steven P. Gygi; Jasbir Seehra; John A. Hawley; Bruce M. Spiegelman

Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.


Analytical Chemistry | 2014

MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes

Graeme C. McAlister; David Nusinow; Mark P. Jedrychowski; Martin Wühr; Edward L. Huttlin; Brian K. Erickson; Ramin Rad; Wilhelm Haas; Steven P. Gygi

Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance, and ultimately produces more high-quality quantitative measurements. To demonstrate utility, we analyzed biological triplicates of eight colon cancer cell lines using the MultiNotch MS3 method. Across all the replicates we quantified 8 378 proteins in union and 6 168 proteins in common. Taking into account that each of these quantified proteins contains eight distinct cell-line measurements, this data set encompasses 174 704 quantitative ratios each measured in triplicate across the biological replicates. Herein, we demonstrate that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.


Analytical Chemistry | 2012

Increasing the Multiplexing Capacity of TMTs Using Reporter Ion Isotopologues with Isobaric Masses

Graeme C. McAlister; Edward L. Huttlin; Wilhelm Haas; Lily Ting; Mark P. Jedrychowski; John C. Rogers; Karsten Kuhn; Ian Pike; Robert A. Grothe; Justin Blethrow; Steven P. Gygi

Quantitative mass spectrometry methods offer near-comprehensive proteome coverage; however, these methods still suffer with regards to sample throughput. Multiplex quantitation via isobaric chemical tags (e.g., TMT and iTRAQ) provides an avenue for mass spectrometry-based proteome quantitation experiments to move away from simple binary comparisons and toward greater parallelization. Herein, we demonstrate a straightforward method for immediately expanding the throughput of the TMT isobaric reagents from 6-plex to 8-plex. This method is based upon our ability to resolve the isotopic shift that results from substituting a (15)N for a (13)C. In an accommodation to the preferred fragmentation pathways of ETD, the TMT-127 and -129 reagents were recently modified such that a (13)C was exchanged for a (15)N. As a result of this substitution, the new TMT reporter ions are 6.32 mDa lighter. Even though the mass difference between these reporter ion isotopologues is incredibly small, modern high-resolution and mass accuracy analyzers can resolve these ions. On the basis of our ability to resolve and accurately measure the relative intensity of these isobaric reporter ions, we demonstrate that we are able to quantify across eight samples simultaneously by combining the (13)C- and (15)N-containing reporter ions. Considering the structure of the TMT reporter ion, we believe this work serves as a blueprint for expanding the multiplexing capacity of the TMT reagents to at least 10-plex and possibly up to 18-plex.


Molecular Cell | 2011

The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote Fatty Acid Oxidation Independently of Changes in NAD+

Zachary Gerhart-Hines; John E. Dominy; Sharon M. Blättler; Mark P. Jedrychowski; Alexander S. Banks; Ji-Hong Lim; Helen Chim; Steven P. Gygi; Pere Puigserver

The NAD(+)-dependent deacetylase SIRT1 is an evolutionarily conserved metabolic sensor of the Sirtuin family that mediates homeostatic responses to certain physiological stresses such as nutrient restriction. Previous reports have implicated fluctuations in intracellular NAD(+) concentrations as the principal regulator of SIRT1 activity. However, here we have identified a cAMP-induced phosphorylation of a highly conserved serine (S434) located in the SIRT1 catalytic domain that rapidly enhanced intrinsic deacetylase activity independently of changes in NAD(+) levels. Attenuation of SIRT1 expression or the use of a nonphosphorylatable SIRT1 mutant prevented cAMP-mediated stimulation of fatty acid oxidation and gene expression linked to this pathway. Overexpression of SIRT1 in mice significantly potentiated the increases in fatty acid oxidation and energy expenditure caused by either pharmacological β-adrenergic agonism or cold exposure. These studies support a mechanism of Sirtuin enzymatic control through the cAMP/PKA pathway with important implications for stress responses and maintenance of energy homeostasis.


Journal of Cell Biology | 2009

MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

Michele Bastiani; Libin Liu; Michelle M. Hill; Mark P. Jedrychowski; Susan J. Nixon; Harriet P. Lo; Daniel Abankwa; Robert Luetterforst; Manuel A. Fernandez-Rojo; Michael Breen; Steven P. Gygi; J. Vinten; Piers J. Walser; Kathryn N. North; John F. Hancock; Paul F. Pilch; Robert G. Parton

Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.


Cell Metabolism | 2015

Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry.

Mark P. Jedrychowski; Christiane D. Wrann; Joao A. Paulo; Kaitlyn K. Gerber; John Szpyt; Matthew M. Robinson; K. Sreekumaran Nair; Steven P. Gygi; Bruce M. Spiegelman

Exercise provides many health benefits, including improved metabolism, cardiovascular health, and cognition. We have shown previously that FNDC5, a type I transmembrane protein, and its circulating form, irisin, convey some of these benefits in mice. However, recent reports questioned the existence of circulating human irisin both because human FNDC5 has a non-canonical ATA translation start and because of claims that many human irisin antibodies used in commercial ELISA kits lack required specificity. In this paper we have identified and quantitated human irisin in plasma using mass spectrometry with control peptides enriched with heavy stable isotopes as internal standards. This precise state-of-the-art method shows that human irisin is mainly translated from its non-canonical start codon and circulates at ∼ 3.6 ng/ml in sedentary individuals; this level is increased to ∼ 4.3 ng/ml in individuals undergoing aerobic interval training. These data unequivocally demonstrate that human irisin exists, circulates, and is regulated by exercise.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Fat cells directly sense temperature to activate thermogenesis

Li Ye; Jun Wu; Paul Cohen; Lawrence Kazak; Melin Khandekar; Mark P. Jedrychowski; Xing Zeng; Steven P. Gygi; Bruce M. Spiegelman

Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27–33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.


PLOS Biology | 2006

Hem-1 Complexes Are Essential for Rac Activation, Actin Polymerization, and Myosin Regulation during Neutrophil Chemotaxis

Orion D. Weiner; Maike Rentel; Alex Ott; Glenn E. Brown; Mark P. Jedrychowski; Michael B. Yaffe; Steven P. Gygi; Lewis C. Cantley; Henry R. Bourne; Marc W. Kirschner

Migrating cells need to make different actin assemblies at the cells leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes), scaffolded by hematopoietic protein 1 (Hem-1), that organize the neutrophils leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE)2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference–mediated knockdown of Hem-1–containing complexes in neutrophil-like cells: (a) dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b) substantially weakens Rac activation and phosphatidylinositol-(3,4,5)-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5)-tris-phosphate)/Rac/F-actin–mediated feedback circuit that organizes the leading edge; and (c) prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1–containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

Collaboration


Dive into the Mark P. Jedrychowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille E. Doykan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Howard L. Weiner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg Butovsky

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander S. Banks

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge