Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark P. Wernet is active.

Publication


Featured researches published by Mark P. Wernet.


AIAA Journal | 2000

Review of Planar Multiple-Component Velocimetry in High-Speed Flows

Mo Samimy; Mark P. Wernet

High-speed flows encountered in most applications typically have very high Reynolds numbers and are often highly turbulent. Even in a laboratory-scale high subsonic or supersonic (high-speed) flow, velocities could vary over 3 orders of magnitude, and the turbulence spatial and temporal scales could span over 4-5 orders of magnitude. Exploring detailed physics of such flows presents major challenges to both experimental and computational researchers. An ultimate velocimetry technique would provide detailed, accurate, volumetric, real-time velocity data in such flows. With that being the goal, currently there are two planar velocimetry techniques that are developing rapidly into very useful tools with the potential of providing accurate velocity information in high-speed flows. The techniques are planar Doppler velocimetry (PDV) and particle imaging velocimetry (PIV). Whereas PDV has been under development for a relatively short period of time and is becoming a powerful technique, more accurate in high-speed flows, PIV is an established technique in low-speed flows and is now breaking ground in high-speed flows. The purpose of this review is to provide detailed background on these two techniques, to discuss the strengths and constraints of each technique, and to outline the areas in need of further improvement and development


Journal of Fluid Mechanics | 2005

An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets

Brenda S. Henderson; James Bridges; Mark P. Wernet

An experimental investigation into the structure of a supersonic jet impinging on a large plate is presented. Digital particle image velocimetry (DPIV), shadowgraph photography and acoustic measurements are used to understand the relationship between the unsteady jet structure and the production of tones for nozzle-to-plate spacings between 1 and 5 nozzle exit diameters at a nozzle–pressure ratio equal to 4. Results indicate that the instability of the jet depends on the location of the plate in the shock cell structure of the corresponding free jet and the strength of the standoff shock wave, rather than on the occurrence of recirculation zones in the impingement region. Phase-locked studies show streamwise displacements of the stand-off shock wave, a moving recirculation zone in the subsonic flow in front of the plate, and significant oscillations of both the compression and expansion regions in the peripheral supersonic flow when tones are produced. Sound is shown to be generated by periodic pulsing of the wall jet boundary resulting from periodic motion of the flow in the impingement and near-wall regions of the flow.


Measurement Science and Technology | 2007

Temporally resolved PIV for space–time correlations in both cold and hot jet flows

Mark P. Wernet

Temporally resolved particle image velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows—a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered six nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centred along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space–time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.


Measurement Science and Technology | 2005

Symmetric phase only filtering: a new paradigm for DPIV data processing

Mark P. Wernet

The standard approach in digital particle image velocimetry (DPIV) data processing is to use fast Fourier transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to matched spatial filtering, a technique commonly used in optical correlators to perform the cross-correlation operation. Phase only filtering is a well-known variation of matched spatial filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of dc noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the dc objects. Tedious image masking or background image subtraction is not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new symmetric phase only filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT-based correlation processing with no significant computational performance penalty. The SPOF-based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data.


Journal of Turbomachinery-transactions of The Asme | 2001

An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

Mark P. Wernet; Michelle M. Bright; Gary J. Skoch

Abstract Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


Experiments in Fluids | 1993

Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery

Mark P. Wernet; Alexander D. Pline

An efficient video based, multi-frame particle displacement tracking technique is presented. The technique is demonstrated on a thermocapillary flow. The Cramer-Rao lower bound centroid measurement uncertainty is derived for Gaussian particle images with Poisson noise recorded on a CCD array. The optimal particle image diameter is determined to be approximately 11/2 pixels. The centroid error increases for particle image diameters larger or smaller than the optimal value. The particle centroid results are carried over to the case of a cross-correlation peak centroid estimate. Particle tracking techniques are shown to have higher accuracy than auto or cross-correlation techniques when the individual velocity measurements are averaged over a comparable correlation subregion.


aiaa ceas aeroacoustics conference | 2002

Turbulence Measurements of Separate Flow Nozzles with Mixing Enhancement Features

James Bridges; Mark P. Wernet

Comparison of turbulence data taken in three separate flow nozzles, two with mixing enhancement features on their core nozzle, shows how the mixing enhancement features modify turbulence to reduce jet noise. The three nozzles measured were the baseline axisymmetric nozzle 3BB, the alternating chevron nozzle, 3A12B, with 6-fold symmetry, and the flipper tab nozzle 3T24B also with 6-fold symmetry. The data presented show the differences in turbulence characteristics produced by the geometric differences in the nozzles, with emphasis on those characteristics of interest in jet noise. Among the significant findings: the enhanced mixing devices reduce turbulence in the jet mixing region while increasing it in the fan/core shear layer, the ratios of turbulence components are significantly altered by the mixing devices, and the integral lengthscales do not conform to any turbulence model yet proposed. These findings should provide guidance for modeling the statistical properties of turbulence to improve jet noise prediction.


aiaa ceas aeroacoustics conference | 2008

Turbulence Associated With Broadband Shock Noise in Hot Jets

James Bridges; Mark P. Wernet

Time-Resolved Particle Image Velocimetry (TRPIV) has been applied to a series of jet flows to measure turbulence statistics associated with broadband shockassociated noise (BBSN). Data were acquired in jets of Mach numbers 1.05, 1.185, and 1.4 at different temperatures. Both convergent and ideally expanded nozzles were tested, along with a convergent nozzle modified to minimize screech. Key findings include the effect of heat on shock structure and jet decay, the increase in turbulent velocity when screech is present, and the relative lack of spectral detail associated with the enhanced turbulence.


international congress on instrumentation in aerospace simulation facilities | 1999

Fuzzy logic enhanced digital PIV processing software

Mark P. Wernet

Digital Particle image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.


aiaa ceas aeroacoustics conference | 2007

Effect of Temperature on Jet Velocity Spectra

James Bridges; Mark P. Wernet

Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

Collaboration


Dive into the Mark P. Wernet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaikrishnan R. Kadambi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudeep Sastry

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Mehta

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

A. Subramanian

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge