Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Peifer is active.

Publication


Featured researches published by Mark Peifer.


Cell | 1997

Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF

Marc van de Wetering; Robert Cavallo; Dennis Dooijes; Moniek van Beest; Johan H. van Es; Joseph Loureiro; Arne Ypma; Deborah A. Hursh; Tamara Jones; Amy Bejsovec; Mark Peifer; Mark A. Mortin; Hans Clevers

The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions in Armadillo required for Wingless signaling. One of these interacts with dTCF, while the other constitutes a transactivation domain. Mutations in dTCF and expression of a dominant-negative dTCF transgene cause a segment polarity phenotype and affect expression of the Wingless target genes engrailed and Ultrabithorax. Epistasis analysis positions dTCF downstream of armadillo. The Armadillo-dTCF complex mediates Wingless signaling as a bipartite transcription factor.


Nature | 1998

Drosophila Tcf and Groucho interact to repress wingless signalling activity

Robert Cavallo; Rachel T. Cox; Melissa M. Moline; Jeroen P. Roose; Gordon Polevoy; Hans Clevers; Mark Peifer; Amy Bejsovec

Wingless/Wnt signalling directs cell-fate choices during embryonic development,. Inappropriate reactivation of the pathway causes cancer. In Drosophila, signal transduction from Wingless stabilizes cytosolic Armadillo, which then forms a bipartite transcription factor with the HMG-box protein Drosophila Tcf (dTcf) and activates expression of Wingless-responsive genes. Here we report that in the absence of Armadillo, dTcf acts as a transcriptional repressor of Wingless-responsive genes, and we show that Groucho acts as a corepressor in this process. Reduction of dTcf activity partially suppresses wingless and armadillo mutant phenotypes, leading to derepression of Wingless-responsive genes. Furthermore, overexpression of wild-type dTcf enhances the phenotype of a weak wingless allele. Finally, mutations in the Drosophila groucho gene also suppress wingless and armadillo mutant phenotypes as Groucho physically interacts with dTcf and is required for its full repressor activity.


Cell | 1990

The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin

Mark Peifer; Eric Wleschaus

The Drosophila segment polarity gene armadillo is required for pattern formation within embryonic segments and imaginal discs. We have found that armadillo is highly conserved during evolution; it is 63% identical to human plakoglobin, a protein found in adhesive junctions joining epithelial and other cells. We have examined arm protein localization in a number of larval tissues and found that arm protein accumulation within cells shares many features with the accumulation of plakoglobin. We have compared the phenotype and molecular lesions responsible for the different arm mutations. Surprisingly, severely truncated proteins retain some function; the degree of function is strictly correlated with the length of the truncated protein, suggesting that the internally repetitive arm protein is modular in function. We present a possible model for the cellular role of arm.


Nature Reviews Molecular Cell Biology | 2000

Cadherins in embryonic and neural morphogenesis

Ulrich Tepass; Kevin Truong; Dorothea Godt; Mitsuhiko Ikura; Mark Peifer

Cadherins not only maintain the structural integrity of cells and tissues but also control a wide array of cellular behaviours. They are instrumental for cell and tissue polarization, and they regulate cell movements such as cell sorting, cell migration and cell rearrangements. Cadherins may also contribute to neurite outgrowth and pathfinding, and to synaptic specificity and modulation in the central nervous system.


Cell | 1985

The Abdominal Region of the Bithorax Complex

François Karch; Barbara Weiffenbach; Mark Peifer; Welcome Bender; Ian Duncan; Susan E. Celniker; Madeline A. Crosby; E. B. Lewis

The homeotic mutations in the right half of the bithorax complex of Drosophila cause segmental transformations in the second through the eighth segments of the fly. A chromosomal walk in the bithorax complex has now been extended 215 kb through the right half of the complex, and lesions for over 40 mutations have been located on the DNA map. The mutations can be grouped in a series of phenotypic classes, one for each abdominal segment, although each mutation typically affects more than one segment. The mutant lesions of each class are clustered, and they are aligned on the chromosome in the order of the body segments that they affect. Complementation tests suggest interactions between widely spaced DNA regions; indeed, the right half cannot be split anywhere without some loss of function.


Cold Spring Harbor Perspectives in Biology | 2009

Wnt Signaling from Development to Disease: Insights from Model Systems

Ken M. Cadigan; Mark Peifer

One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.


Journal of Cell Biology | 2005

The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila

Tony J. C. Harris; Mark Peifer

Cell polarity is critical for epithelial structure and function. Adherens junctions (AJs) often direct this polarity, but we previously found that Bazooka (Baz) acts upstream of AJs as epithelial polarity is first established in Drosophila. This prompted us to ask how Baz is positioned and how downstream polarity is elaborated. Surprisingly, we found that Baz localizes to an apical domain below its typical binding partners atypical protein kinase C (aPKC) and partitioning defective (PAR)-6 as the Drosophila epithelium first forms. In fact, Baz positioning is independent of aPKC and PAR-6 relying instead on cytoskeletal cues, including an apical scaffold and dynein-mediated basal-to-apical transport. AJ assembly is closely coupled to Baz positioning, whereas aPKC and PAR-6 are positioned separately. This forms a stratified apical domain with Baz and AJs localizing basal to aPKC and PAR-6, and we identify specific mechanisms that keep these proteins apart. These results reveal key steps in the assembly of the apical domain in Drosophila.


Cell | 1993

extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1

Cordella Rauskolb; Mark Peifer; Eric Wieschaus

Mutations in the Drosophila gene extradenticle (exd) cause homeotic transformations by altering the morphological consequences of homeotic selector gene activity. We have cloned and sequenced exd: it encodes a homeodomain protein with extensive identity (71%) to the human proto-oncoprotein Pbx1. exd is expressed during embryogenesis when the selector homeodomain proteins of the Antennapedia and bithorax complexes establish segmental identity. Maternally expressed exd is uniform and can suppress the segmental transformations of embryos lacking zygotic exd. While zygotic exd expression is also at first uniform, later expression is modulated by the homeotic selector genes. These studies support the view that exd acts with the selector homeodomain proteins as a DNA-binding transcription factor, thereby altering their regulation of downstream target genes.


Journal of Cell Biology | 2004

Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila.

Tony J. C. Harris; Mark Peifer

Adherens junctions (AJs) are thought to be key landmarks for establishing epithelial cell polarity, but the origin of epithelial polarity in Drosophila remains unclear. Thus, we examined epithelial polarity establishment during early Drosophila development. We found apical accumulation of both Drosophila E-Cadherin (DE-Cad) and the apical cue Bazooka (Baz) as cells first form. Mutant analyses revealed that apical Baz accumulations can be established in the absence of AJs, whereas assembly of apical DE-Cad complexes requires Baz. Thus, Baz acts upstream of AJs during epithelial polarity establishment. During gastrulation the absence of AJs results in widespread cell dissociation and depolarization. Some epithelial structures are retained, however. These structures maintain apical Baz, accumulate apical Crumbs, and organize polarized cytoskeletons, but display abnormal cell morphology and fail to segregate the basolateral cue Discs large from the apical domain. Thus, although epithelial polarity develops in the absence of AJs, AJs play specific roles in maintaining epithelial architecture and segregating basolateral cues.


Journal of Cell Biology | 2007

A role for a novel centrosome cycle in asymmetric cell division

Nasser M. Rusan; Mark Peifer

Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a “dominant centrosome.” This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle–cortex interactions refine this alignment.

Collaboration


Dive into the Mark Peifer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Poulton

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira I. Pronobis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Kirkpatrick

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Donald G. McEwen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nasser M. Rusan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge