Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark R. Pickard is active.

Publication


Featured researches published by Mark R. Pickard.


Oncogene | 2009

GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer

Mirna Mourtada-Maarabouni; Mark R. Pickard; Vanessa L. Hedge; Farzin Farzaneh; Gwyn T. Williams

Effective control of both cell survival and cell proliferation is critical to the prevention of oncogenesis and to successful cancer therapy. Using functional expression cloning, we have identified GAS5 (growth arrest-specific transcript 5) as critical to the control of mammalian apoptosis and cell population growth. GAS5 transcripts are subject to complex post-transcriptional processing and some, but not all, GAS5 transcripts sensitize mammalian cells to apoptosis inducers. We have found that, in some cell lines, GAS5 expression induces growth arrest and apoptosis independently of other stimuli. GAS5 transcript levels were significantly reduced in breast cancer samples relative to adjacent unaffected normal breast epithelial tissues. The GAS5 gene has no significant protein-coding potential but expression encodes small nucleolar RNAs (snoRNAs) in its introns. Taken together with the recent demonstration of tumor suppressor characteristics in the related snoRNA U50, our observations suggest that such snoRNAs form a novel family of genes controlling oncogenesis and sensitivity to therapy in cancer.


Biochimica et Biophysica Acta | 2013

Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines

Mark R. Pickard; Mirna Mourtada-Maarabouni; Gwyn T. Williams

While the role of small non-coding RNAs, such as miRNAs, in apoptosis control is well established, long non-coding RNAs (lncRNAs) have received less attention. Growth Arrest-Specific 5 (GAS5) encodes multiple snoRNAs within its introns, while exonic sequences produce lncRNA which can act as a riborepressor of the glucocorticoid and related receptors. GAS5 negatively regulates the survival of lymphoid and breast cells, and is aberrantly expressed in several cancers. Although cellular GAS5 levels decline as prostate cancer cells acquire castration-resistance, the influence of GAS5 on prostate cell survival has not been determined. To address this question, prostate cell lines were transfected with GAS5-encoding plasmids or GAS5 siRNAs, and cell survival was assessed. Basal apoptosis increased, and cell survival decreased, after transfection of 22Rv1 cells with plasmids encoding GAS5 transcripts, including mature GAS5 lncRNA. Similar effects were observed in PC-3 cells. In stable clones of 22Rv1, cell death correlated strongly with cellular GAS5 levels. Induction of 22Rv1 cell death by UV-C irradiation and chemotherapeutic drugs was augmented in cells transiently transfected with GAS5 constructs, and attenuated following down-regulation of GAS5 expression. Again, in these experiments, cell death was strongly correlated with cellular GAS5 levels. Thus, GAS5 promotes the apoptosis of prostate cells, and exonic sequence, i.e. GAS5 lncRNA, is sufficient to mediate this activity. Abnormally low levels of GAS5 expression may therefore reduce the effectiveness of chemotherapeutic agents. Although several lncRNAs have recently been shown to control cell survival, this is the first report of a death-promoting lncRNA in prostate cells.


Breast Cancer Research | 2009

Dysregulated expression of Fau and MELK is associated with poor prognosis in breast cancer.

Mark R. Pickard; Andrew R. Green; Ian O. Ellis; Carlos Caldas; Vanessa L. Hedge; Mirna Mourtada-Maarabouni; Gwyn T. Williams

IntroductionProgrammed cell death through apoptosis plays an essential role in the hormone-regulated physiological turnover of mammary tissue. Failure of this active gene-dependent process is central both to the development of breast cancer and to the appearance of the therapy-resistant cancer cells that produce clinical relapse. Functional expression cloning in two independent laboratories has identified Finkel–Biskis–Reilly murine sarcoma virus-associated ubiquitously expressed gene (Fau) as a novel apoptosis regulator and candidate tumour suppressor. Fau modifies apoptosis-controller Bcl-G, which is also a key target for candidate oncoprotein maternal embryonic leucine zipper kinase (MELK).MethodsWe have used RNA interference to downregulate Fau and Bcl-G expression, both simultaneously and independently, in breast cancer cells in vitro to determine the importance of their roles in apoptosis. Expression of Fau, Bcl-G and MELK was measured by quantitative RT-PCR in breast cancer tissue and in matched breast epithelial tissue from the same patients. Expression data of these genes obtained using microarrays from a separate group of patients were related to patient survival in Kaplan–Meier analyses.ResultssiRNA-mediated downregulation of either Fau or Bcl-G expression inhibited apoptosis, and the inhibition produced by combining the two siRNAs was consistent with control of Bcl-G by Fau. Fau expression is significantly reduced in breast cancer tissue and this reduction is associated with poor patient survival, as predicted for a candidate breast cancer tumour suppressor. In addition, MELK expression is increased in breast cancer tissue and this increase is also associated with poor patient survival, as predicted for a candidate oncogene. Bcl-G expression is reduced in breast cancer tissue but decreased Bcl-G expression showed no correlation with survival, indicating that the most important factors controlling Bcl-G activity are post-translational modification (by Fau and MELK) rather than the rate of transcription of Bcl-G itself.ConclusionsThe combination of in vitro functional studies with the analysis of gene expression in clinical breast cancer samples indicates that three functionally interconnected genes, Fau, Bcl-G and MELK, are crucially important in breast cancer and identifies them as attractive targets for improvements in breast cancer risk prediction, prognosis and therapy.


Breast Cancer Research and Treatment | 2014

Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy

Mark R. Pickard; Gwyn T. Williams

The putative tumour suppressor and apoptosis-promoting gene, growth arrest-specific 5 (GAS5), encodes long ncRNA (lncRNA) and snoRNAs. Its expression is down-regulated in breast cancer, which adversely impacts patient prognosis. In this preclinical study, the consequences of decreased GAS5 expression for breast cancer cell survival following treatment with chemotherapeutic agents are addressed. In addition, functional responses of triple-negative breast cancer cells to GAS5 lncRNA are examined, and mTOR inhibition as a strategy to enhance cellular GAS5 levels is investigated. Breast cancer cell lines were transfected with either siRNA to GAS5 or with a plasmid encoding GAS5 lncRNA and the effects on breast cancer cell survival were determined. Cellular responses to mTOR inhibitors were evaluated by assaying culture growth and GAS5 transcript levels. GAS5 silencing attenuated cell responses to apoptotic stimuli, including classical chemotherapeutic agents; the extent of cell death was directly proportional to cellular GAS5 levels. Imatinib action in contrast, was independent of GAS5. GAS5 lncRNA promoted the apoptosis of triple-negative and oestrogen receptor-positive cells but only dual PI3K/mTOR inhibition was able to enhance GAS5 levels in all cell types. Reduced GAS5 expression attenuates apoptosis induction by classical chemotherapeutic agents in breast cancer cells, providing an explanation for the relationship between GAS5 expression and breast cancer patient prognosis. Clinically, this relationship may be circumvented by the use of GAS5-independent drugs such as imatinib, or by restoration of GAS5 expression. The latter may be achieved by the use of a dual PI3K/mTOR inhibitor, to improve apoptotic responses to conventional chemotherapies.


Genes | 2015

Molecular and Cellular Mechanisms of Action of Tumour Suppressor GAS5 LncRNA.

Mark R. Pickard; Gwyn T. Williams

It is increasingly recognised that lncRNAs play essential regulatory roles in fundamental biological processes and, consequently, that their dysregulation may contribute to major human diseases, including cancer. Better understanding of lncRNA biology may therefore offer new insights into pathogenetic mechanisms and thereby offer novel opportunities for diagnosis and therapy. Of particular interest in this regard is GAS5 lncRNA, which is down-regulated in multiple cancers, with expression levels related to both clinico-pathological characteristics and patient prognosis. Functional studies have further shown that GAS5 lncRNA both inhibits the proliferation and promotes the apoptosis of multiple cell types, and that together these cellular mechanisms of action are likely to form the basis of its tumour suppressor action. At the same time, advances have been made in our understanding of the molecular mechanisms of GAS5 lncRNA action in recent years, including riborepression of certain steroid hormone receptors and sequestration of miR-21, impacting key regulatory pathways of cell survival. Overall this accumulating knowledge has the potential to improve both the diagnosis and treatment of cancer, and ultimately patient outcome.


International Journal of Molecular Sciences | 2010

Robust Uptake of Magnetic Nanoparticles (MNPs) by Central Nervous System (CNS) Microglia: Implications for Particle Uptake in Mixed Neural Cell Populations

Mark R. Pickard; Divya M. Chari

Magnetic nanoparticles (MNPs) are important contrast agents used to monitor a range of neuropathological processes; microglial cells significantly contribute to MNP uptake in sites of pathology. Microglial activation occurs following most CNS pathologies but it is not known if such activation alters MNP uptake, intracellular processing and toxicity. We assessed these parameters in microglial cultures with and without experimental ‘activation’. Microglia showed rapid and extensive MNP uptake under basal conditions with no changes found following activation; significant microglial toxicity was observed at higher particle concentrations. Based on our findings, we suggest that avid MNP uptake by endogenous CNS microglia could significantly limit uptake by other cellular subtypes in mixed neural cell populations.


Nature Communications | 2014

Conserved sequence-specific lincRNA–steroid receptor interactions drive transcriptional repression and direct cell fate

William H. Hudson; Mark R. Pickard; Ian Mitchelle S. de Vera; Emily G. Kuiper; Mirna Mourtada-Maarabouni; Graeme L. Conn; Douglas J. Kojetin; Gwyn T. Williams; Eric A. Ortlund

The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering

Stuart I. Jenkins; Mark R. Pickard; David N. Furness; Humphrey Hak Ping Yiu; Divya M. Chari

AIM To analyze magnetic particle uptake and intracellular processing by the four main non-neuronal subclasses of the CNS: oligodendrocyte precursor cells; oligodendrocytes; astrocytes; and microglia. MATERIALS & METHODS Magnetic particle uptake and processing were studied in rat oligodendrocyte precursor cells and oligodendrocytes using fluorescence and transmission electron microscopy, and the results collated with previous data from rat microglia and astrocyte studies. All cells were derived from primary mixed glial cultures. RESULTS Significant intercellular differences were observed between glial subtypes: microglia demonstrate the most rapid/extensive particle uptake, followed by astrocytes, with oligodendrocyte precursor cells and oligodendrocytes showing significantly lower uptake. Ultrastructural analyses suggest that magnetic particles are extensively degraded in microglia, but relatively stable in other cells. CONCLUSION Intercellular differences in particle uptake and handling exist between the major neuroglial subtypes. This has important implications for the utility of the magnetic particle platform for neurobiological applications including genetic modification, transplant cell labeling and biomolecule delivery to mixed CNS cell populations.


Oncotarget | 2016

The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells.

Mark R. Pickard; Gwyn T. Williams

Growth arrest-specific 5 (GAS5) lncRNA promotes apoptosis, and its expression is down-regulated in breast cancer. GAS5 lncRNA is a decoy of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM), which is essential for the regulation of breast cancer cell apoptosis. This preclinical study aimed to determine if the GAS5 HREM sequence alone promotes the apoptosis of breast cancer cells. Nucleofection of hormone-sensitive and –insensitive breast cancer cell lines with a GAS5 HREM DNA oligonucleotide increased both basal and ultraviolet-C-induced apoptosis, and decreased culture viability and clonogenic growth, similar to GAS5 lncRNA. The HREM oligonucleotide demonstrated similar sequence specificity to the native HREM for its functional activity and had no effect on endogenous GAS5 lncRNA levels. Certain chemically modified HREM oligonucleotides, notably DNA and RNA phosphorothioates, retained pro-apoptotic. activity. Crucially the HREM oligonucleotide could overcome apoptosis resistance secondary to deficient endogenous GAS5 lncRNA levels. Thus, the GAS5 lncRNA HREM sequence alone is sufficient to induce apoptosis in breast cancer cells, including triple-negative breast cancer cells. These findings further suggest that emerging knowledge of structure/function relationships in the field of lncRNA biology can be exploited for the development of entirely novel, oligonucleotide mimic-based, cancer therapies.


Biochimica et Biophysica Acta | 2011

Candidate tumour suppressor Fau regulates apoptosis in human cells: An essential role for Bcl-G

Mark R. Pickard; Mirna Mourtada-Maarabouni; Gwyn T. Williams

FAU, which encodes a ubiquitin-like protein (termed FUBI) with ribosomal protein S30 as a carboxy-terminal extension, has recently been identified as a pro-apoptotic regulatory gene. This activity may be mediated by Bcl-G (a pro-apoptotic member of the Bcl-2 family) which can be covalently modified by FUBI. FAU gene expression has been shown to be down-regulated in human breast, prostate and ovarian tumours, and this down-regulation is strongly associated with poor prognosis in breast cancer. We demonstrate here that ectopic FAU expression increases basal apoptosis in human T-cell lines and 293T/17 cells, whereas it has only a transient stimulatory effect on ultraviolet-C (UVC)-induced apoptosis. Conversely, siRNA-mediated silencing of FAU gene expression has no effect on basal apoptosis, but attenuates UV-induced apoptosis. Importantly, prior knockdown of Bcl-G expression ablates the stimulation of basal apoptosis by FAU, consistent with an essential downstream role for Bcl-G, itself a candidate tumour suppressor, in mediating the apoptosis regulatory role of FAU. In 293T/17 cells, Bcl-G knockdown also attenuates UV-induced apoptosis, so that Bcl-G may constitute a common factor in the pathways by which both FAU and UV-irradiation induce apoptosis. UV irradiation increases Bcl-G mRNA levels, providing an explanation for the transient nature of the effect of ectopic FAU expression on UV-induced apoptosis. Since failure of apoptosis is fundamental to the development of many cancers, the pro-apoptotic activity of the Fau/Bcl-G pathway offers an attractive explanation for the putative tumour suppressor role of FAU.

Collaboration


Dive into the Mark R. Pickard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge