Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark R. Witmer is active.

Publication


Featured researches published by Mark R. Witmer.


Journal of Biological Chemistry | 2009

Dissection of the Endogenous Cellular Pathways of PCSK9-induced Low Density Lipoprotein Receptor Degradation EVIDENCE FOR AN INTRACELLULAR ROUTE

Steve Poirier; Gaétan Mayer; Viviane Poupon; Peter S. McPherson; Roxane Desjardins; Kévin Ly; Marie-Claude Asselin; Robert W. Day; Franck Duclos; Mark R. Witmer; Rex A. Parker; Annik Prat; Nabil G. Seidah

Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia. PCSK9 binds the epidermal growth factor domain A (EGF-A) of the LDLR and directs it to endosomes/lysosomes for destruction. Although the mechanism by which PCSK9 regulates LDLR degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways. Here, we show that clathrin light chain small interfering RNAs that block intracellular trafficking from the trans-Golgi network to lysosomes rapidly increased LDLR levels within HepG2 cells in a PCSK9-dependent fashion without affecting the ability of exogenous PCSK9 to enhance LDLR degradation. In contrast, blocking the extracellular LDLR endocytosis/degradation pathway by a 4-, 6-, or 24-h incubation of cells with Dynasore or an EGF-AB peptide or by knockdown of endogenous autosomal recessive hypercholesterolemia did not significantly affect LDLR levels. The present data from HepG2 cells and mouse primary hepatocytes favor a model whereby depending on the dose and/or incubation period, endogenous PCSK9 enhances the degradation of the LDLR both extra- and intracellularly. Therefore, targeting either pathway, or both, would be an effective method to reduce PCSK9 activity in the treatment of hypercholesterolemia and coronary heart disease.


Journal of Pharmacology and Experimental Therapeutics | 2014

Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein Biologic Alternative to PCSK9 Antibodies for Low-Density Lipoprotein Lowering.

Tracy S. Mitchell; Ginger Chao; Doree Sitkoff; Fred Lo; Hossain Monshizadegan; Daniel Meyers; Simon Low; Katie A. Russo; Rose DiBella; Fabienne M. Denhez; Mian Gao; Joseph E. Myers; Gerald J. Duke; Mark R. Witmer; Bowman Miao; Siew P. Ho; Javed Khan; Rex A. Parker

Proprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III–domain and engineered for high-affinity target binding. BMS-962476, an ∼11-kDa polypeptide conjugated to polyethylene glycol to enhance pharmacokinetics, binds with subnanomolar affinity to human. The X-ray cocrystal structure of PCSK9 with a progenitor Adnectin shows ∼910 Å2 of PCSK9 surface covered next to the LDL receptor binding site, largely by residues of a single loop of the Adnectin. In hypercholesterolemic, overexpressing human PCSK9 transgenic mice, BMS-962476 rapidly lowered cholesterol and free PCSK9 levels. In genomic transgenic mice, BMS-962476 potently reduced free human PCSK9 (ED50 ∼0.01 mg/kg) followed by ∼2-fold increases in total PCSK9 before return to baseline. Treatment of cynomolgus monkeys with BMS-962476 rapidly suppressed free PCSK9 >99% and LDL-cholesterol ∼55% with subsequent 6-fold increase in total PCSK9, suggesting reduced clearance of circulating complex. Liver sterol response genes were consequently downregulated, following which LDL and total PCSK9 returned to baseline. These studies highlight the rapid dynamics of PCSK9 control over LDL and liver cholesterol metabolism and characterize BMS-962476 as a potent and efficacious PCSK9 inhibitor.


Journal of Medicinal Chemistry | 2014

Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase.

Robert G. Gentles; Min Ding; John A. Bender; Carl P. Bergstrom; Katharine A. Grant-Young; Piyasena Hewawasam; Thomas William Hudyma; Scott Martin; Andrew Nickel; Alicia Regueiro-Ren; Yong Tu; Zhong Yang; Kap-Sun Yeung; Xiaofan Zheng; Sam T. Chao; Jung-Hui Sun; Brett R. Beno; Daniel M. Camac; Mian Gao; Paul E. Morin; Steven Sheriff; Jeff Tredup; John Wan; Mark R. Witmer; Dianlin Xie; Umesh Hanumegowda; Jay O. Knipe; Kathy Mosure; Kenneth S. Santone; Dawn D. Parker

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Journal of Biological Chemistry | 2003

Kinetic Studies on β-Site Amyloid Precursor Protein-cleaving Enzyme (BACE) CONFIRMATION OF AN ISO-MECHANISM

Larisa Toulokhonova; William J. Metzler; Mark R. Witmer; Robert A. Copeland; Jovita Marcinkeviciene

The steady-state kinetic mechanism of β-amyloid precursor protein-cleaving enzyme (BACE)-catalyzed proteolytic cleavage was evaluated using product and statine- (Stat(V)) or hydroxyethylene-containing (OM99-2) peptide inhibition data, solvent kinetic isotope effects, and proton NMR spectroscopy. The noncompetitive inhibition pattern observed for both cleavage products, together with the independence of Stat(V) inhibition on substrate concentration, suggests a uni-bi-iso kinetic mechanism. According to this mechanism, the enzyme undergoes multiple conformation changes during the catalytic cycle. If any of these steps are rate-limiting to turnover, an enzyme form preceding the rate-limiting conformational change should accumulate. An insignificant solvent kinetic isotope effect (SKIE) on k cat/K m , a large inverse solvent kinetic isotope effect onk cat, and the absence of any SKIE on the inhibition onset by Stat(V) during catalysis together indicate that the rate-limiting iso-step occurs after formation of a tetrahedral intermediate. A moderately short and strong hydrogen bond (at δ 13.0 ppm and φ of 0.6) has been observed by NMR spectroscopy in the enzyme-hydroxyethylene peptide (OM99-2) complex that presumably mimics the tetrahedral intermediate of catalysis. Collapse of this intermediate, involving multiple steps and interconversion of enzyme forms, has been suggested to impose a rate limitation, which is manifested in a significant SKIE on k cat. Multiple enzyme forms and their distribution during catalysis were evaluated by measuring the SKIE on the noncompetitive (mixed) inhibition constants for the C-terminal reaction product. Large, normal SKIE values were observed for these inhibition constants, suggesting that both kinetic and thermodynamic components contribute to theK ii and K is expressions, as has been suggested for other iso-mechanism featuring enzymes. We propose that a conformational change related to the reprotonation of aspartates during or after the bond-breaking event is the rate-limiting segment in the catalytic reaction of β-amyloid precursor protein-cleaving enzyme, and ligands binding to other than the ground-state forms of the enzyme might provide inhibitors of greater pharmacological relevance.


Bioorganic & Medicinal Chemistry Letters | 2011

Syntheses and initial evaluation of a series of indolo-fused heterocyclic inhibitors of the polymerase enzyme (NS5B) of the hepatitis C virus.

Xiaofan Zheng; Thomas W. Hudyma; Scott W. Martin; Carl P. Bergstrom; Min Ding; Feng He; Jeffrey L. Romine; Michael A. Poss; John F. Kadow; John Wan; Mark R. Witmer; Paul E. Morin; Daniel M. Camac; Steven Sheriff; Brett R. Beno; Karen Rigat; Ying-Kai Wang; Robert A. Fridell; Julie A. Lemm; Dike Qiu; Mengping Liu; Stacey Voss; Lenore Pelosi; Susan B. Roberts; Min Gao; Jay O. Knipe; Robert G. Gentles

Herein, we present initial SAR studies on a series of bridged 2-arylindole-based NS5B inhibitors. The introduction of bridging elements between the indole N1 and the ortho-position of the 2-aryl moiety resulted in conformationally constrained heterocycles that possess multiple additional vectors for further exploration. The binding mode and pharmacokinetic (PK) properties of select examples, including: 13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[2,1-d][1,4]benzodiazepine-10-carboxylic acid (7) (IC(50)=0.07 μM, %F=18), are reported.


Biochemistry | 1995

Cooperativity and binding in the mechanism of cytosolic phospholipase A2.

James R. Burke; Mark R. Witmer; Jeffrey Tredup; Radmila Micanovic; Kurt R. Gregor; Joydeep Lahiri; Kenneth M. Tramposch; Joseph J. Villafranca

Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2 ester of phospholipids and is believed to be responsible for the receptor-regulated release of arachidonic acid from phospholipid pools. The enzyme was assayed using vesicles containing arachidonate-containing phospholipid substrate, such as 1-palmitoyl-2-arachidonoylphosphatidylcholine (PAPC) or 1-stearoyl-2-arachidonoylphosphatidylinositol (SAPI), dispersed within vesicles of 1,2-dimyristoylphosphatidylmethanol (DMPM). We report here that the enzyme shows an apparent cooperative effect with respect to the mole fraction of arachidonate-containing phospholipids within these covesicles. The data can be fit to a modified Hill equation yielding Hill coefficients, n, of 2-3. This effect is unusual in that it is dependent on the nature of the sn-2 ester as opposed to the phosphoglycerol head group. This cooperativity is independent of both the concentration of glycerol, which greatly increases enzyme activity and stability, and the concentration of calcium, which facilitates the fusion of the covesicles. Surprisingly, 1-palmitoyl-2-arachidonoylphosphatidylethanolamine (PAPE) does not show the same cooperative effect, although the rate at which it is hydrolyzed is much greater when PAPC is present. Moreover, PAPE has a dissociation constant from the active site (KD* = 0.7 mol %) which is comparable to that of PAPC and SAPI (KD* values of 0.3 and 0.3 mol %, respectively). These results are consistent with the presence of an allosteric site that, when occupied, induces a change in the enzyme which facilitates enzymatic hydrolysis. If so, PAPC and SAPI, but not PAPE, must be able to bind to this allosteric site. Alternatively, this effect may result from changes in the physical nature of the bilayer which result upon increasing the bilayer concentration of arachidonate-containing phospholipids. This previously unobserved effect may represent another mechanism by which cells can regulate the activity of cPLA2.


Archives of Biochemistry and Biophysics | 2003

Comparative studies of active site–ligand interactions among various recombinant constructs of human β-amyloid precursor protein cleaving enzyme

Lisa M. Kopcho; Jianhong Ma; Jovita Marcinkeviciene; Zhihong Lai; Mark R. Witmer; Janet Cheng; Joseph Yanchunas; Jeffrey Tredup; Martin J. Corbett; Deepa Calambur; Michael Wittekind; Manjula Paruchuri; Dharti Kothari; Grace Lee; Subinay Ganguly; Vidhyashankar Ramamurthy; Paul E. Morin; Daniel M. Camac; Robert W King; Amy L Lasut; O Harold Ross; Milton C Hillman; Barbara Fish; Keqiang Shen; Randine L. Dowling; Young Bun Kim; Nilsa R. Graciani; Dale Collins; Andrew P. Combs; Henry J. George

Amyloid precursor protein (APP) cleaving enzyme (BACE) is the enzyme responsible for beta-site cleavage of APP, leading to the formation of the amyloid-beta peptide that is thought to be pathogenic in Alzheimers disease (AD). Hence, BACE is an attractive pharmacological target, and numerous research groups have begun searching for potent and selective inhibitors of this enzyme as a potential mechanism for therapeutic intervention in AD. The mature enzyme is composed of a globular catalytic domain that is N-linked glycosylated in mammalian cells, a single transmembrane helix that anchors the enzyme to an intracellular membrane, and a short C-terminal domain that extends outside the phospholipid bilayer of the membrane. Here we have compared the substrate and active site-directed inhibitor binding properties of several recombinant constructs of human BACE. The constructs studied here address the importance of catalytic domain glycosylation state, inclusion of domains other than the catalytic domain, and incorporation into a membrane bilayer on the interactions of the enzyme active site with peptidic ligands. We find no significant differences in ligand binding properties among these various constructs. These data demonstrate that the nonglycosylated, soluble catalytic domain of BACE faithfully reflects the ligand binding properties of the full-length mature enzyme in its natural membrane environment. Thus, the use of the nonglycosylated, soluble catalytic domain of BACE is appropriate for studies aimed at understanding the determinants of ligand recognition by the enzyme active site.


Bioorganic & Medicinal Chemistry Letters | 2002

Novel diamide-based inhibitors of IMPDH

Henry H. Gu; Edwin J. Iwanowicz; Junqing Guo; Scott H. Watterson; Zhongqi Shen; William J. Pitts; T. G. Murali Dhar; Catherine A. Fleener; Katherine A. Rouleau; N.Z. Sherbina; Mark R. Witmer; Jeffrey Tredup; Diane Hollenbaugh

A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase is described. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are presented.


Journal of Biological Chemistry | 2015

Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain

John S. Tokarski; Adriana Zupa-Fernandez; Jeffrey Tredup; Kristen Pike; Chiehying Chang; Dianlin Xie; Lihong Cheng; Donna L. Pedicord; Jodi K. Muckelbauer; Stephen R. Johnson; Sophie Wu; Suzanne C. Edavettal; Yang Hong; Mark R. Witmer; Lisa Elkin; Yuval Blat; William J. Pitts; David S. Weinstein; James R. Burke

Background: Interleukin-23 mediates pathobiology in many autoimmune disorders. Results: A chemogenomics approach identified small molecule agents that block receptor-mediated activation or tyrosine kinase 2 (Tyk2) and downstream signaling. Compounds stabilize the pseudokinase domain of Tyk2. Conclusion: Small molecule ligands of the Tyk2 pseudokinase domain stabilize an autoinhibitory interaction with the catalytic domain. Significance: This work enables the discovery of selective therapeutics targeting Tyk2-dependent pathways critical in autoimmunity. Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity.


Archives of Biochemistry and Biophysics | 2008

Differential activation of recombinant human acetyl-CoA carboxylases 1 and 2 by citrate

Gregory A. Locke; Dong Cheng; Mark R. Witmer; James Tamura; Tasir S. Haque; Robert F. Carney; Alan R. Rendina; Jovita Marcinkeviciene

The role of citrate as a physiological modulator of mammalian acetyl-CoA carboxylases (ACCs) has been well studied; however, the mechanism has not been clearly defined. In the current study, we found that citrate activated recombinant human ACC2 by more than approximately 1000-fold, but activated recombinant human ACC1 only by approximately 4-fold. The data fit best to a model which accounts for cooperative binding of two citrate molecules. Citrate activates ACCs at lower concentrations and inhibits at higher concentrations with apparent K(d) values of 0.8+/-0.3 and 3.4+/-0.6 mM, and apparent K(i) values of 20+/-8 and 38 +/-8 mM for ACC1 and ACC2, respectively. In the absence of added citrate, both ACC1 and ACC2 were inactivated by avidin rapidly and completely. Addition of 10 mM citrate protected ACC2 from avidin inactivation; however, protection by citrate was less pronounced for ACC1. In response to citrate treatment, different aggregation patterns for the two isoforms were also observed by dynamic light scattering. Although formation of aggregates by both isoforms was sensitive to citrate, with Mg2+ and Mg-citrate addition only formation of the ACC2 aggregates showed a dependence on citrate concentration. Mass spectrometry data indicated phosphorylation of Ser79 of ACC1 (a serine known to regulate activity), and the corresponding Ser221 of ACC2. Taken together, these data suggest that recombinant human ACC1 and ACC2 are differentially activated by citrate, most likely through conformational changes leading to aggregation, with ACC2 being more sensitive to this activator.

Collaboration


Dive into the Mark R. Witmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Metzler

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge