Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Ramsdale is active.

Publication


Featured researches published by Mark Ramsdale.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Apoptosis induced by environmental stresses and amphotericin B in Candida albicans

Andrew J. K. Phillips; Ian Sudbery; Mark Ramsdale

New antifungal agents are urgently required to combat life-threatening infections caused by opportunistic fungal pathogens like Candida albicans. The manipulation of endogenous fungal programmed cell death responses could provide a basis for future therapies. Here we assess the physiology of death in C. albicans in response to environmental stresses (acetic acid and hydrogen peroxide) and an antifungal agent (amphotericin B). Exposure of C. albicans to 40-60 mM acetic acid, 5-10 mM hydrogen peroxide, or 4-8 μg·ml-1 amphotericin B produced cellular changes reminiscent of mammalian apoptosis. Nonviable cells that excluded propidium iodide displayed the apoptotic marker phosphatidylserine (as shown by annexin-V-FITC labeling), were terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive (indicating nuclease-mediated double-strand DNA breakage), and produced reactive oxygen species. Ultrastructural changes in apoptotic cells included chromatin condensation and margination, separation of the nuclear envelope, and nuclear fragmentation. C. albicans cells treated at higher doses of these compounds showed cellular changes characteristic of necrosis. Necrotic cells displayed reduced TUNEL staining, a lack of surface phosphatidylserine, limited reactive oxygen species production, and an inability to exclude propidium iodide. Necrotic cells lacked defined nuclei and showed extensive intracellular vacuolization. Apoptosis in C. albicans was associated with an accumulation of cells in the G2/M phase of the cell cycle, and under some apoptosis-inducing conditions, significant proportions of yeast cells switched to hyphal growth before dying. This is a demonstration of apoptosis in a medically important fungal pathogen.


Biochimica et Biophysica Acta | 2008

Programmed cell death in pathogenic fungi

Mark Ramsdale

Greater understanding of programmed cell death (PCD) responses in pathogenic fungi may offer a chance of exploiting the fungal molecular death machinery to control fungal infections. Clearly identifiable differences between the death machineries of pathogens and their hosts, make this a feasible target. Evidence for PCD in a range of pathogenic fungi is discussed alongside an evaluation of the capacity of existing antifungal agents to promote apoptosis and other forms of cell death. Information about death related signalling pathways that have been examined in pathogens as diverse as Candida albicans, Aspergillus fumigatus, Magnaporthe grisea and Colletotrichum trifolii are discussed.


Molecular Biology of the Cell | 2008

MNL1 Regulates Weak Acid-induced Stress Responses of the Fungal Pathogen Candida albicans

Mark Ramsdale; Laura Selway; David Stead; Janice L. Walker; Zhikang Yin; Susan Nicholls; Jonathan D. Crowe; Emma M. Sheils; Alistair J. P. Brown

MNL1, the Candida albicans homologue of an orphan Msn2-like gene (YER130c in Saccharomyces cerevisiae) has no known function. Here we report that MNL1 regulates weak acid stress responses. Deletion of MNL1 prevents the long-term adaptation of C. albicans cells to weak acid stresses and compromises their global transcriptional response under these conditions. The promoters of Mnl1-dependent genes contain a novel STRE-like element (SLE) that imposes Mnl1-dependent, weak acid stress-induced transcription upon a lacZ reporter in C. albicans. The SLE (HHYYCCCCTTYTY) is related to the Nrg1 response element (NRE) element recognized by the transcriptional repressor Nrg1. Deletion of NRG1 partially restores the ability of C. albicans mnl1 cells to adapt to weak acid stress, indicating that Mnl1 and Nrg1 act antagonistically to regulate this response. Molecular, microarray, and proteomic analyses revealed that Mnl1-dependent adaptation does not occur in cells exposed to proapoptotic or pronecrotic doses of weak acid, suggesting that Ras-pathway activation might suppress the Mnl1-dependent weak acid response in dying cells. Our work defines a role for this YER130c orthologue in stress adaptation and cell death.


Biochemical Society Transactions | 2011

Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae

Derek Wilkinson; Mark Ramsdale

A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.


Microbiology | 2008

Divergent functions of three Candida albicans zinc- cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae

Alix T. Coste; Mark Ramsdale; Françoise Ischer; Dominique Sanglard

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.


New Phytologist | 1996

Imbalanced nuclear ratios, post‐germination mortality and phenotype—genotype relationships in allopatrically‐derived heterokaryons of Heterobasidion annosum

Mark Ramsdale; A.D.M. Rayner

Twelve heterokaryotic strains of Heterobasidion annosum (Fr.) Bref. containing nuclei and mitochondria derived from British and North European populations were prepared by pairing homokaryotic strains and isolating hyphal tips from either side of interaction interfaces. Conidia derived from the heterokaryons had high germinability and were predominantly uninucleate. The nuclear genotypes recovered from these conidia were predominantly nonresident in origin, reflecting the marked asymmetry m nuclear ratios (as high as 9:1) in favour of invasive nuclei that developed in the mycelium. In spite of this asymmetry, the heterokaryons had similar phenotypes to the resident homokaryons that they were derived from. Whereas the relative ability of sib-related nuclei to become established in a homokaryon was about equal in sympatric protoplasm, it could be very different in allopatric protoplasm. Post-germination mortality due to the cessation of development following transfer of germlings to fresh medium was on average similar for allopatric and sympatric conidia, but there was a marked trend for reduction in mortality as nuclear ratio asymmetry increased. Homokaryons derived via conidia from a common heterokaryon exhibited less somatic incompatibility when paired together than did the original, basidiospore-derived strains. These findings indicate that phenotype-genotype relationships resulting from allopatric matings, such as could occur following geographical transposition, are liable to differ radically from those in sympatric matings and so have potentially profound effects on resident population structure.


Microbial Cell | 2018

Guidelines and recommendations on yeast cell death nomenclature

Didac Carmona-Gutierrez; Maria A. Bauer; Andreas Zimmermann; Andrés Aguilera; Nicanor Pier Giorgio Austriaco; Kathryn R. Ayscough; Rena Balzan; Shoshana Bar-Nun; Antonio Barrientos; Peter Belenky; Marc Blondel; Ralf J. Braun; Michael Breitenbach; William C. Burhans; Sabrina Büttner; Duccio Cavalieri; Michael Chang; Katrina F. Cooper; Manuela Côrte-Real; Vitor Santos Costa; Christophe Cullin; Ian W. Dawes; Jörn Dengjel; Martin B. Dickman; Tobias Eisenberg; Birthe Fahrenkrog; Nicolas Fasel; Kai-Uwe Fröhlich; Ali Gargouri; Sergio Giannattasio

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.


Current Opinion in Microbiology | 2012

Programmed cell death in the cellular differentiation of microbial eukaryotes

Mark Ramsdale

Programmed cell death (PCD) is a ubiquitous feature of multicellular and unicellular organisms. Eukaryotic microbes use PCD to regulate the development of specialized cells and structures. Many different types of PCD occur, ranging from apoptosis-like cell death, programmed necrosis and autophagic death. An overview of cell death pathways is undertaken, highlighting new elements in the PCD molecular machinery. Examples of PCD in cellular differentiation are explored alongside evolutionary scenarios that could initiate and maintain PCD in microbes, including the evolution of multicellularity. The finding that defects in PCD can lead to antimicrobial drug resistance is also considered. Greater understanding of PCD and its role in differentiation offers new hope for discovery of therapeutic agents that manipulate endogenous cell suicide pathways.


Mbio | 2018

Community Development between Porphyromonas gingivalis and Candida albicans Mediated by InlJ and Als3.

Maryta Sztukowska; Lindsay C. Dutton; Christopher Delaney; Mark Ramsdale; Gordon Ramage; Howard F. Jenkinson; Angela H. Nobbs; Richard J. Lamont

ABSTRACT The pleiomorphic yeast Candida albicans is a significant pathogen in immunocompromised individuals. In the oral cavity, C. albicans is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. C. albicans colonizes the subgingival area, and the frequency of colonization increases in periodontal disease. In this study, we investigated the interactions between C. albicans and the periodontal pathogen Porphyromonas gingivalis. C. albicans and P. gingivalis were found to coadhere in both the planktonic and sessile phases. Loss of the internalin-family protein InlJ abrogated adhesion of P. gingivalis to C. albicans, and recombinant InlJ protein competitively inhibited interspecies binding. A mutant of C. albicans deficient in expression of major hyphal protein Als3 showed diminished binding to P. gingivalis, and InlJ interacted with Als3 heterologously expressed in Saccharomyces cerevisiae. Transcriptional profiling by RNA sequencing (RNA-Seq) established that 57 genes were uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, with overrepresentation of those corresponding to 31 gene ontology terms, including those associated with growth and division. Of potential relevance to the disease process, C. albicans induced upregulation of components of the type IX secretion apparatus. Collectively, these findings indicate that InlJ-Als3-dependent binding facilitates interdomain community development between C. albicans and P. gingivalis and that P. gingivalis has the potential for increased virulence within such communities. IMPORTANCE Many diseases involve the concerted actions of microorganisms assembled in polymicrobial communities. Inflammatory periodontal diseases are among the most common infections of humans and result in destruction of gum tissue and, ultimately, in loss of teeth. In periodontal disease, pathogenic communities can include the fungus Candida albicans; however, the contribution of C. albicans to the synergistic virulence of the community is poorly understood. Here we characterize the interactions between C. albicans and the keystone bacterial pathogen Porphyromonas gingivalis and show that coadhesion mediated by specific proteins results in major changes in gene expression by P. gingivalis, which could serve to increase pathogenic potential. The work provides significant insights into interdomain interactions that can enhance our understanding of diseases involving a multiplicity of microbial pathogens. IMPORTANCE Many diseases involve the concerted actions of microorganisms assembled in polymicrobial communities. Inflammatory periodontal diseases are among the most common infections of humans and result in destruction of gum tissue and, ultimately, in loss of teeth. In periodontal disease, pathogenic communities can include the fungus Candida albicans; however, the contribution of C. albicans to the synergistic virulence of the community is poorly understood. Here we characterize the interactions between C. albicans and the keystone bacterial pathogen Porphyromonas gingivalis and show that coadhesion mediated by specific proteins results in major changes in gene expression by P. gingivalis, which could serve to increase pathogenic potential. The work provides significant insights into interdomain interactions that can enhance our understanding of diseases involving a multiplicity of microbial pathogens.


Mycologist | 2001

Fungi with a sense of time: molecular genetics of temporal organization in Neurospora crassa

Mark Ramsdale

Biological clocks are a feature of all living organisms. The outputs from internally driven clocks affect activities as diverse as the timing of cell proliferation and death, sexual and asexual reproduction, migration patterns, bioluminescence, photosynthesis, hormonal signalling, neuronal firing and activity/rest cycles. Whilst a complete understanding of the cellular mechanics of a biological clock remains elusive, much has been discovered in recent years. Studies of fungal biological clocks in particular have been very rewarding because of the ease with which their rhythms can be monitored and the availability of a range of well defined mutants that display altered clock properties.

Collaboration


Dive into the Mark Ramsdale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul Murad

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge