Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Rogers-Evans is active.

Publication


Featured researches published by Mark Rogers-Evans.


Journal of Medicinal Chemistry | 2010

Oxetanes in Drug Discovery: Structural and Synthetic Insights

Georg Wuitschik; Erick M. Carreira; Björn Wagner; Holger Fischer; Isabelle Parrilla; Franz Schuler; Mark Rogers-Evans; Klaus Müller

An oxetane can trigger profound changes in aqueous solubility, lipophilicity, metabolic stability, and conformational preference when replacing commonly employed functionalities such as gem-dimethyl or carbonyl groups. The magnitude of these changes depends on the structural context. Thus, by substitution of a gem-dimethyl group with an oxetane, aqueous solubility may increase by a factor of 4 to more than 4000 while reducing the rate of metabolic degradation in most cases. The incorporation of an oxetane into an aliphatic chain can cause conformational changes favoring synclinal rather than antiplanar arrangements of the chain. Additionally spirocyclic oxetanes (e.g., 2-oxa-6-aza-spiro[3.3]heptane) bear remarkable analogies to commonly used fragments in drug discovery, such as morpholine, and are even able to supplant the latter in its solubilizing ability. A rich chemistry of oxetan-3-one and derived Michael acceptors provide venues for the preparation of a broad variety of novel oxetanes not previously documented, thus providing the foundation for their broad use in chemistry and drug discovery.


Angewandte Chemie | 2010

Oxetanes as Versatile Elements in Drug Discovery and Synthesis

Johannes A. Burkhard; Georg Wuitschik; Mark Rogers-Evans; Klaus Müller; Erick M. Carreira

Sizable resources, both financial and human, are invested each year in the development of new pharmaceutical agents. However, despite improved techniques, the new compounds often encounter difficulties in satisfying and overcoming the numerous physicochemical and many pharmacological constraints and hurdles. Oxetanes have been shown to improve key properties when grafted onto molecular scaffolds. Of particular interest are oxetanes that are substituted only in the 3-position, since such units remain achiral and their introduction into a molecular scaffold does not create a new stereocenter. This Minireview gives an overview of the recent advances made in the preparation and use of 3-substituted oxetanes. It also includes a discussion of the site-dependent modifications of various physicochemical and biochemical properties that result from the incorporation of the oxetane unit in molecular architectures.


Journal of Medicinal Chemistry | 2013

β-Secretase (BACE1) Inhibitors with High in Vivo Efficacy Suitable for Clinical Evaluation in Alzheimer’s Disease

Hans Hilpert; Wolfgang Guba; Thomas Johannes Woltering; Wolfgang Wostl; Emmanuel Pinard; Harald Mauser; Alexander V. Mayweg; Mark Rogers-Evans; Roland Humm; Daniela Krummenacher; Thorsten Muser; Christian Schnider; Helmut Jacobsen; Laurence Ozmen; Alessandra Bergadano; David Banner; Remo Hochstrasser; Andreas Kuglstatter; Pascale David-Pierson; Holger Fischer; Alessandra Polara; Robert Narquizian

An extensive fluorine scan of 1,3-oxazines revealed the power of fluorine(s) to lower the pKa and thereby dramatically change the pharmacological profile of this class of BACE1 inhibitors. The CF3 substituted oxazine 89, a potent and highly brain penetrant BACE1 inhibitor, was able to reduce significantly CSF Aβ40 and 42 in rats at oral doses as low as 1 mg/kg. The effect was long lasting, showing a significant reduction of Aβ40 and 42 even after 24 h. In contrast to 89, compound 1b lacking the CF3 group was virtually inactive in vivo.


British Journal of Pharmacology | 2009

Biochemical and behavioural characterization of EMPA, a novel high‐affinity, selective antagonist for the OX2 receptor

Parichehr Malherbe; Edilio Borroni; Luca Gobbi; Henner Knust; Matthias Nettekoven; Emmanuel Pinard; Olivier Roche; Mark Rogers-Evans; Joseph G. Wettstein; Jean-Luc Moreau

Background and purpose:  The OX2 receptor is a G‐protein‐coupled receptor that is abundantly found in the tuberomammillary nucleus, an important site for the regulation of the sleep‐wake state. Herein, we describe the in vitro and in vivo properties of a selective OX2 receptor antagonist, N‐ethyl‐2‐[(6‐methoxy‐pyridin‐3‐yl)‐(toluene‐2‐sulphonyl)‐amino]‐N‐pyridin‐3‐ylmethyl‐acetamide (EMPA).


Organic Letters | 2010

Synthesis and Structural Analysis of a New Class of Azaspiro[3.3]heptanes as Building Blocks for Medicinal Chemistry

Johannes A. Burkhard; Carine Guérot; Henner Knust; Mark Rogers-Evans; Erick M. Carreira

Straightforward access toward previously unreported substituted, heterocyclic spiro[3.3]heptanes is disclosed. These spirocyclic systems may be considered as alternatives to 1,3-heteroatom-substituted cyclohexanes, which are otherwise insufficiently stable to allow their use in drug discovery. Conformational details are discussed on the basis of X-ray crystallographic structures.


Organic Letters | 2013

Synthesis and Stability of Oxetane Analogs of Thalidomide and Lenalidomide

Johannes A. Burkhard; Georg Wuitschik; Jean-Marc Plancher; Mark Rogers-Evans; Erick M. Carreira

Oxetanes are used in drug discovery to enable physicochemical and metabolic property enhancement for the structures to which they are grafted. An imide C═O to oxetane swap on thalidomide and lenalidomide templates provides analogs with similar physicochemical and in vitro properties of the parent drugs, with an important exception: oxetane analog 2 displays a clear differentiation with respect to human plasma stability. The prospect of limiting in vivo stability/metabolism, blocking in vivo racemization, and potentially altering teratogenicity is appealing.


Journal of Medicinal Chemistry | 2008

Benzodioxoles: Novel Cannabinoid-1 Receptor Inverse Agonists for the Treatment of Obesity

Leo Alig; Jochem Alsenz; Mirjana Andjelkovic; Stefanie Bendels; Agnès Bénardeau; Konrad Bleicher; Anne Bourson; Pascale David-Pierson; Wolfgang Guba; Stefan Hildbrand; Dagmar Kube; Thomas Lübbers; Alexander V. Mayweg; Robert Narquizian; Werner Neidhart; Matthias Nettekoven; Jean-Marc Plancher; Cynthia Rocha; Mark Rogers-Evans; Stephan Röver; Gisbert Schneider; Sven Taylor; Pius Waldmeier

The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed.


Bioorganic & Medicinal Chemistry Letters | 2013

BACE1 inhibitors: a head group scan on a series of amides.

Thomas Johannes Woltering; Wolfgang Wostl; Hans Hilpert; Mark Rogers-Evans; Emmanuel Pinard; Alexander V. Mayweg; Martin Göbel; David W. Banner; Jörg Benz; Massimiliano Travagli; Martina Pollastrini; Guido Marconi; Emanuele Gabellieri; Wolfgang Guba; Harald Mauser; Matteo Andreini; Helmut Jacobsen; Eoin Power; Robert Narquizian

A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimers disease treatment.


Organic Letters | 2013

Construction of Multifunctional Modules for Drug Discovery: Synthesis of Novel Thia/Oxa-Azaspiro[3.4]octanes

Dong Bo Li; Mark Rogers-Evans; Erick M. Carreira

New classes of thia/oxa-azaspiro[3.4]octanes are synthesized through the implementation of robust and step-economic routes. The targeted spirocycles have been designed to act as novel, multifunctional, and structurally diverse modules for drug discovery. Furthermore, enantioselective approaches to the spirocycles are reported.


Organic Letters | 2011

Synthesis of novel azaspiro[3.4]octanes as multifunctional modules in drug discovery.

Dong Bo Li; Mark Rogers-Evans; Erick M. Carreira

Step-economic and scalable syntheses of novel thia-azaspiro[3.4]octanes are reported. These spirocycles and some related intermediates can serve as uncharted multifunctional modules for drug discovery chemistry.

Collaboration


Dive into the Mark Rogers-Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge