Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark S. Roberson is active.

Publication


Featured researches published by Mark S. Roberson.


Journal of Biological Chemistry | 1999

Calcium Influx through L-type Channels Is Required for Selective Activation of Extracellular Signal-regulated Kinase by Gonadotropin-releasing Hormone

Jennifer M. Mulvaney; Tong Zhang; Clare Fewtrell; Mark S. Roberson

The hypothalamic decapeptide gonadotropin-releasing hormone stimulates mobilization of two discrete pools of calcium in clonal (αT3-1) and primary pituitary gonadotropes. A multidisciplinary approach was implemented to investigate the effects of discrete calcium fluctuations on the signaling pathways linking the gonadotropin-releasing hormone receptor to activation of mitogen-activated protein kinases and immediate early genes. Blockade of calcium influx through nifedipine-sensitive voltage-gated calcium channels reduced buserelin-induced activation of extracellular signal-regulated kinase (ERK) and c-Fos while activation of c-Jun N-terminal kinase and c-Jun was unaffected. Inhibition of buserelin-stimulated ERK activity by nifedipine was also observed in rat pituitary cells in primary culture. Direct activation of αT3-1 cell L-type calcium channels with the agonist Bay-K 8644 resulted in phosphorylation of ERK and induction of c-Fos. However, simple voltage-induced channel activation did not produce a sufficient calcium signal, since depolarization with 35 mm KCl failed to induce activation of ERK. Depletion of intracellular calcium stores with thapsigargin did not affect buserelin-induced ERK activation. An inhibitor of protein kinase C decreased calcium influx through nifedipine-sensitive calcium channels and phosphorylation of ERK induced by buserelin. Pharmacological inhibition of protein kinase C did not block Bay-K 8644-induced ERK activation. These observations suggest that calcium influx through L-type channels is required for GnRH-induced activation of ERK and c-Fos and that the influence of calcium lies downstream of protein kinase C.


Frontiers in Neuroendocrinology | 2010

GnRH signaling, the gonadotrope and endocrine control of fertility.

Stuart P. Bliss; Amy M. Navratil; Jianjun Xie; Mark S. Roberson

Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.


Endocrinology | 1998

Prostaglandin F2α Stimulates the Raf/MEK1/Mitogen-Activated Protein Kinase Signaling Cascade in Bovine Luteal Cells1

Dong Bao Chen; Suzanne D. Westfall; Hon W. Fong; Mark S. Roberson; John S. Davis

Upon binding to its G protein-coupled transmembrane receptors, the actions of PGF2α on the corpus luteum are initiated by the phospholipase C/diacylglycerol-inositol 1,4,5-trisphosphate (InsP3)/Ca2+-protein kinase C (PKC) pathway. However, little is known about the downstream intracellular signaling events that can lead to transcriptional activation in response to PGF2α. The present study was conducted to examine the involvement of the mitogen-activated protein kinase (MAPK) signaling cascade in the corpus luteum. Three isoforms of the Raf family of oncoprotein kinases (A-Raf, B-Raf, and Raf-1 or c-Raf) were detected in bovine luteal cells. Raf-1 and B-Raf, but not A-Raf, were activated by PGF2α (1 μm) and the pharmacological PKC activator phorbol myristate acetate (PMA, 20 nm). Kinetic analysis revealed that PGF2α rapidly and transiently activated Raf-1. In vitro protein kinase assays demonstrated that activation of Raf-1 and B-Raf resulted in the phosphorylation and activation of MAPK kinase (MEK1), whi...


Molecular Endocrinology | 2009

ERK Signaling in the Pituitary Is Required for Female But Not Male Fertility

Stuart P. Bliss; Andrew D. Miller; Amy M. Navratil; Jianjun Xie; Sean P. McDonough; Patricia J. Fisher; Gary E. Landreth; Mark S. Roberson

Males and females require different patterns of pituitary gonadotropin secretion for fertility. The mechanisms underlying these gender-specific profiles of pituitary hormone production are unknown; however, they are fundamental to understanding the sexually dimorphic control of reproductive function at the molecular level. Several studies suggest that ERK1 and -2 are essential modulators of hypothalamic GnRH-mediated regulation of pituitary gonadotropin production and fertility. To test this hypothesis, we generated mice with a pituitary-specific depletion of ERK1 and 2 and examined a range of physiological parameters including fertility. We find that ERK signaling is required in females for ovulation and fertility, whereas male reproductive function is unaffected by this signaling deficiency. The effects of ERK pathway ablation on LH biosynthesis underlie this gender-specific phenotype, and the molecular mechanism involves a requirement for ERK-dependent up-regulation of the transcription factor Egr1, which is necessary for LHbeta expression. Together, these findings represent a significant advance in elucidating the molecular basis of gender-specific regulation of the hypothalamic-pituitary-gonadal axis and sexually dimorphic control of fertility.


Endocrinology | 2008

Activator Protein-1 and Smad Proteins Synergistically Regulate Human Follicle-Stimulating Hormone β-Promoter Activity

Ying Wang; Jérôme Fortin; Pankaj Lamba; Marco Bonomi; Luca Persani; Mark S. Roberson; Daniel J. Bernard

GnRH1 stimulates the synthesis and secretion of FSH and LH from the anterior pituitary gland. The molecular mechanisms through which GnRH1 produces these effects in humans have not been determined. Here, we examined transcriptional regulation of the human FSHbeta (FSHB) subunit using reporter assays in immortalized murine gonadotrope cells. GnRH1 dose and time dependently stimulated FSHB promoter activity, with peak stimulation occurring at 8 h. GnRH1 rapidly stimulated various MAPK cascades, though the ERK1/2 and p38 pathways appeared to be most critical for FSHB induction. Indeed, constitutively active forms of both Raf1 kinase and MAP2K6 (MKK6) were sufficient to stimulate reporter activity. GnRH1 stimulated activator protein-1 (AP-1) (FosB, c-fos, JunB, and cJun) synthesis and complex formation, the latter of which bound to a conserved cis-element within -120 bp of the transcription start site. A second, lower affinity, site was mapped more proximally. Mutations of both cis-elements diminished GnRH1-stimulated promoter activity, though disruption of the higher affinity site had a more dramatic effect. A dominant-negative Fos protein dose dependently inhibited GnRH1-stimulated FSHB transcription, confirming a role for endogenous AP-1 proteins. MAPK kinase 1 (MEK1) and p38 inhibitors significantly attenuated GnRH1-stimulated c-fos, FosB, and JunB synthesis, suggesting a mechanism whereby the ERK1/2 and p38 signaling pathways regulate FSHB transcription. Activins and inhibins potently regulate FSH synthesis in rodents, but their roles in FSH regulation in humans are less clear. Activin A, though weak on its own, synergized with GnRH1 to stimulate human FSHB promoter activity. In contrast, activin A partially inhibited GnRH1-stimulated LHbeta subunit (LHB) transcription. The GnRH1 and activin A signaling pathways appear to converge at the level of the high-affinity AP-1 site. Fos and Jun proteins synergistically regulate reporter activity through this element, and their effects are potentiated by coexpression of either Smad2 or Smad3, effectors in the activin signaling cascade. In summary, GnRH1 and activin A synergistically regulate human FSHB subunit transcription. The combined actions of AP-1 and Smad proteins acting through a conserved AP-1 element provide a candidate mechanism for this effect. The ability of activins to potentiate selectively the effects of GnRH1 on FSHB expression suggests a model for preferential increases in FSH secretion at the luteal-follicular transition of the menstrual cycle.


PLOS Genetics | 2011

Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells.

Xuesen Zhang; Matthew J. Gamble; Sonja C. Stadler; Brian D. Cherrington; Corey P. Causey; Paul R. Thompson; Mark S. Roberson; W. Lee Kraus

Peptidylarginine deiminase IV (PADI4) catalyzes the conversion of positively charged arginine and methylarginine residues to neutrally charged citrulline, and this activity has been linked to the repression of a limited number of target genes. To broaden our knowledge of the regulatory potential of PADI4, we utilized chromatin immunoprecipitation coupled with promoter tiling array (ChIP-chip) analysis to more comprehensively investigate the range of PADI4 target genes across the genome in MCF-7 breast cancer cells. Results showed that PADI4 is enriched in gene promoter regions near transcription start sites (TSSs); and, surprisingly, this pattern of binding is primarily associated with actively transcribed genes. Computational analysis found potential binding sites for Elk-1, a member of the ETS oncogene family, to be highly enriched around PADI4 binding sites; and coimmunoprecipitation analysis then confirmed that Elk-1 physically associates with PADI4. To better understand how PADI4 may facilitate gene transactivation, we then show that PADI4 interacts with Elk-1 at the c-Fos promoter and that, following Epidermal Growth Factor (EGF) stimulation, PADI4 catalytic activity facilitates Elk-1 phosphorylation, histone H4 acetylation, and c-Fos transcriptional activation. These results define a novel role for PADI4 as a transcription factor co-activator.


In Vitro Cellular & Developmental Biology – Animal | 1999

Retinoic acid selectively activates the ERK2 but not JNK/SAPK or P38 map kinases when inducing myeloid differentiation

Andrew Yen; Mark S. Roberson; Susi Varvayanis

SummaryAmong the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.


Biology of Reproduction | 2011

Molecular Cloning and Characterization of Phospholipase C Zeta in Equine Sperm and Testis Reveals Species-Specific Differences in Expression of Catalytically Active Protein

Sylvia J. Bedford-Guaus; L.A. McPartlin; J. Xie; S.L. Westmiller; Mariano G. Buffone; Mark S. Roberson

Oocyte activation at fertilization is brought about by the testis-specific phospholipase C zeta (PLCZ), owing to its ability to induce oscillations in intracellular Ca2+ concentration ([Ca2+]i). Whereas this is a highly conserved mechanism among mammals, important species-specific differences in PLCZ sequence, activity, and expression have been reported. Thus, the objectives of this research were to clone and characterize the intracellular Ca2+-releasing activity and expression of equine PLCZ in sperm and testis. Molecular cloning of equine PLCZ yielded a 1914-bp sequence that translated into a protein of the appropriate size (∼73 kDa), as detected with an anti-PLCZ-specific antibody. Microinjection of 1 μg/μl of equine PLCZ cRNA supported [Ca2+]i oscillations in murine oocytes that were of a higher relative frequency than those generated by an equivalent concentration of murine Plcz cRNA. Immunofluorescence revealed expression of PLCZ over the acrosome, equatorial segment, and head-midpiece junction; unexpectedly, PLCZ also localized to the principal piece of the flagellum in all epididymal, uncapacitated, and capacitated sperm. Immunostaining over the acrosome was abrogated after induction of acrosomal exocytosis. Moreover, injection of either sperm heads or tails into mouse oocytes showed that PLCZ in both fractions is catalytically active. Immunohistochemistry on equine testis revealed expression as early as the round spermatid stage, and injection of these cells supported [Ca2+]i oscillations in oocytes. In summary, we report that equine PLCZ displays higher intrinsic intracellular Ca2+-releasing activity than murine PLCZ and that catalytically active protein is expressed in round spermatids as well as the sperm flagellum, emphasizing important species-specific differences. Moreover, some of these results may suggest potential novel roles for PLCZ in sperm physiology.


Molecular and Cellular Endocrinology | 2001

Activation of mitogen-activated protein kinase phosphatase 2 by gonadotropin-releasing hormone

Tong Zhang; Jennifer M. Mulvaney; Mark S. Roberson

The aim of these studies was to identify the signaling mechanism(s) that contribute to GnRH-induced expression of MAPK phosphatase (MKP)-2, a dual specificity phosphatase that selectively inactivates MAPKs. GnRH receptor activation induced MKP-2 expression in both clonal (alphaT3-1) and primary gonadotropes. Activation of PKC isozymes was sufficient and required for MKP-2 induction. Inhibition of the extracellular signal-regulated kinase (ERK) or c-Jun N-terminal kinase (JNK) but not the p38 MAPK cascade was sufficient to block GnRH-induced MKP-2 expression. Induction of MKP-2 by GnRH was dependent on elevation in intracellular Ca(2+). Inhibition of Ca(2+) influx through L-type voltage-gated calcium channels blocked GnRH-induced MKP-2 expression. Depletion of intracellular Ca(2+) stores with thapsigargin blocked MKP-2 activation by GnRH independent of ERK and JNK activity. These results support the conclusion that MKP-2 induction by GnRH occurs via MAPK-dependent and -independent pathways. One mechanism requires GnRH-induced ERK and JNK activation, while a second MAPK-independent pathway requires a thapsigargin-sensitive calcium signal.


Annals of the New York Academy of Sciences | 2005

New Insight into the Transcriptional Regulation of Vascular Endothelial Growth Factor Expression in the Endometrium by Estrogen and Relaxin

Robert D. Koos; Armina A. Kazi; Mark S. Roberson; Jenny M. Jones

Abstract: Increased uterine capillary permeability, which can be induced by both estrogen and relaxin, is required for endometrial growth and implantation. This effect is mediated in both cases by estrogen receptors (ERs), via stimulation of vascular endothelial growth factor (VEGF) expression. The sites on the VEGF promoter through which induction occurs, however, are completely unclear. We have used the technique of chromatin immunoprecipitation in vivo to localize the site of ER action and identify other transcription factors that are involved. We have found that ERa associates with Sp1/Sp3 at a GC‐rich region of the promoter. More interesting, however, is the observation that estrogen also induces rapid, transient binding of hypoxia‐inducible factor 1 (HIF‐1), which mediates VEGF transcription in response to hypoxia, to the promoter. The estrogen‐induced HIF‐1 binding closely matches the estrogen‐induced pattern of VEGF expression in the uterus, suggesting that HIF‐1 is involved in that induction, and probably that of many other genes as well (HIF‐1 is now known to regulate the expression of more than 40 genes). It is likely that studies now under way will also link relaxin‐induced VEGF expression to HIF‐1. This is based on the similarities in the effects of the two hormones on VEGF expression and on their shared ability to activate the PI3K and MAPK pathways, both of which can activate HIF‐1.

Collaboration


Dive into the Mark S. Roberson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin M. Clay

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge