Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Sharkey is active.

Publication


Featured researches published by Mark Sharkey.


Nature Medicine | 2010

HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects

Maria J. Buzon; Marta Massanella; Josep M. Llibre; Anna Esteve; Viktor Dahl; Maria C. Puertas; Josep M. Gatell; Pere Domingo; Roger Paredes; Mark Sharkey; Sarah Palmer; Mario Stevenson; Bonaventura Clotet; Julià Blanco; Javier Martinez-Picado

Highly active antiretroviral therapy (HAART) results in potent and durable suppression of HIV-1 viremia. However, HIV-1 replication resumes if therapy is interrupted. Although it is generally believed that active replication has been halted in individuals on HAART, immune activation and inflammation continue at abnormal levels, suggesting continued, low-level viral replication. To assess whether active replication might be driving immune activation in HAART, we examined the impact of treatment intensification with the integrase inhibitor raltegravir on viral complementary DNA and immune activation parameters. In the presence of raltegravir, linear HIV-1 cDNA is prevented from integrating into chromatin and is subsequently converted to episomal cDNAs. Raltegravir intensification of a three-drug suppressive HAART regimen resulted in a specific and transient increase in episomal DNAs in a large percentage of HAART-suppressed subjects. Furthermore, in subjects with these episomal DNAs, immune activation was higher at baseline and was subsequently normalized after raltegravir intensification. These results suggest that, despite suppressive HAART, active replication persists in some infected individuals and drives immune activation. The ability of raltegravir intensification to perturb the reservoir that supports active replication has implications for therapeutic strategies aimed at achieving viral eradication.


Nature Medicine | 2000

Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy

Mark Sharkey; Ian Teo; Thomas C. Greenough; Natalia Sharova; Katherine Luzuriaga; John L. Sullivan; R. Pat Bucy; Leondios G. Kostrikis; Ashley T. Haase; Claire Veryard; Raul Davaro; Sarah H. Cheeseman; Jennifer S. Daly; Carol A. Bova; Richard T. Ellison; Brian J. Mady; Kwan Kew Lai; Graeme Moyle; Mark Nelson; Brian Gazzard; Sunil Shaunak; Mario Stevenson

Treatment of HIV-1-infected individuals with a combination of anti-retroviral agents results in sustained suppression of HIV-1 replication, as evidenced by a reduction in plasma viral RNA to levels below the limit of detection of available assays. However, even in patients whose plasma viral RNA levels have been suppressed to below detectable levels for up to 30 months, replication-competent virus can routinely be recovered from patient peripheral blood mononuclear cells and from semen. A reservoir of latently infected cells established early in infection may be involved in the maintenance of viral persistence despite highly active anti-retroviral therapy. However, whether virus replication persists in such patients is unknown. HIV-1 cDNA episomes are labile products of virus infection and indicative of recent infection events. Using episome-specific PCR, we demonstrate here ongoing virus replication in a large percentage of infected individuals on highly active anti-retroviral therapy, despite sustained undetectable levels of plasma viral RNA. The presence of a reservoir of ‘covert’ virus replication in patients on highly active anti-retroviral therapy has important implications for the clinical management of HIV-1-infected individuals and for the development of virus eradication strategies.


The EMBO Journal | 2005

Macrophages archive HIV-1 virions for dissemination in trans

Natalia Sharova; Catherine Swingler; Mark Sharkey; Mario Stevenson

Viruses have evolved various strategies in order to persist within the host. To date, most information on mechanisms of HIV‐1 persistence has been derived from studies with lymphocytes, but there is little information regarding mechanisms that govern HIV‐1 persistence in macrophages. It has previously been demonstrated that virus assembly in macrophages occurs in cytoplasmic vesicles, which exhibit the characteristics of multivesicular bodies or late endosomes. The infectious stability of virions that assemble intracellularly in macrophages has not been evaluated. We demonstrate that virions assembling intracellularly in primary macrophages retain infectivity for extended intervals. Infectious virus was recovered directly from cytoplasmic lysates of macrophages and could be transmitted from macrophages to peripheral blood lymphocytes in trans 6 weeks after ongoing viral replication was blocked. Cell‐associated virus decayed significantly from 1 to 2 weeks post infection, but decreased minimally thereafter. The persistence of intracellular virions did not require the viral accessory proteins Vpu or Nef. The stable sequestration of infectious virions within cytoplasmic compartments of macrophages may represent an additional mechanism for viral persistence in HIV‐1‐infected individuals.


Journal of Virology | 2000

Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: Control of viral replication and absence of persistent HIV-1- specific immune responses

Katherine Luzuriaga; Margaret M. McManus; Michelle D. Catalina; Shane Renee Mayack; Mark Sharkey; Mario Stevenson; John L. Sullivan

ABSTRACT Studies of potent antiretroviral combination regimens were undertaken in young infants to evaluate the potential for long-term suppression of viral replication and to evaluate the immune consequences of such therapies. Early combination antiretroviral therapy led to a loss of plasma viremia, cultivable virus, and labile extrachromosomal replication intermediates. Despite preservation of immune function, persistent human immunodeficiency type 1 (HIV-1)-specific immune responses were not detected in most infants. The absence of detectable, persisting immune responses in most HIV-1-infected infants treated early contrasts with what is typically seen in adults who are treated early. These results are consistent with the notion that early combination antiretroviral therapy of HIV-1-infected infants allows the long-term suppression of viral replication.


PLOS Pathogens | 2008

Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction.

Natalia Sharova; Yuanfei Wu; Xiaonan Zhu; Ruzena Wiersum Stranska; Rajnish Kaushik; Mark Sharkey; Mario Stevenson

Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. We present evidence that the Vpx proteins of HIV-2/SIVSM promote virus infection by antagonizing an antiviral restriction in macrophages. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in trans overcame the restriction to HIV-1 and SIV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. Our results indicate that macrophage harbor a potent antiviral restriction and that primate lentiviruses have evolved Vpx to counteract this restriction.


Nature Biotechnology | 2008

Small-molecule inhibition of HIV-1 Vif

Robin S. Nathans; Hong Cao; Natalia Sharova; Akbar Ali; Mark Sharkey; Ruzena Wiersum Stranska; Mario Stevenson; Tariq M. Rana

The HIV-1 protein Vif, essential for in vivo viral replication, targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses and hepatitis B virus. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule–based new therapies for HIV infection or for enhancing innate immunity against viruses.


Journal of Experimental Medicine | 2002

Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1.

Oliver T. Keppler; Frank J. Welte; Tuan A. Ngo; Peggy S. Chin; Kathryn S. Patton; Chia Lin Tsou; Nancy W. Abbey; Mark Sharkey; Robert M. Grant; Yun You; John D. Scarborough; Wilfried Ellmeier; Dan R. Littman; Mario Stevenson; Israel F. Charo; Brian Herndier; Roberto F. Speck; Mark A. Goldsmith

The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4+ T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4+ T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2–long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Evidence for a cytopathogenicity determinant in HIV-1 Vpr

Mohan Somasundaran; Mark Sharkey; Beda Brichacek; Katherine Luzuriaga; Michael Emerman; John L. Sullivan; Mario Stevenson

HIV-1 is cytopathic for CD4+ T lymphocytes in vitro and this property of HIV-1 is generally considered to account for some of its in vivo cytopathogenicity. Thus, the extent of lymphocyte depletion correlates with the level of viremia whereas low levels of viral replication are typically associated with stable lymphocyte levels and asymptomatic infection such as is observed in non-progressors. Here, we describe a non-progressor who did not fit this general pattern in that CD4+ T lymphocyte homeostasis was maintained in the face of high-level viral replication. Biological viral isolates from this patient replicated in primary lymphocytes without inducing cytopathicity. Because this phenotype is reminiscent of Vpr-deleted viruses, we examined the contribution of the Vpr gene to the viral phenotype. Vpr alleles derived from this patient contained both premature stop codons and an unusual Q3R polymorphism. Insertion of patient-derived Vpr alleles or a Q3R substitution into a cytopathic HIV-1 clone resulted in a marked impairment of cytopathicity without affecting viral replication efficiency. The effect of Vpr on cytopathicity was unrelated to reported activities of Vpr including virion association, interaction with uracil DNA glycosylase, G2 arrest, or enhancement of macrophage infection but correlated with the ability of Vpr to induce host cell apoptosis. This study suggests the presence of a determinant of in vivo cytopathogenicity within HIV-1 Vpr and further indicates that viral replication can be uncoupled from cytopathicity in vitro and in vivo.


Journal of Virology | 2005

In Vivo Evidence for Instability of Episomal Human Immunodeficiency Virus Type 1 cDNA

Mark Sharkey; Karine Triques; Daniel R. Kuritzkes; Mario Stevenson

ABSTRACT Current regimens for the management of human immunodeficiency virus type 1 (HIV-1) infection suppress plasma viremia to below detectable levels for prolonged intervals. Nevertheless, there is a rapid resumption in plasma viremia if therapy is interrupted. Attempts to characterize the extent of viral replication under conditions of potent suppression and undetectable plasma viremia have been hampered by a lack of convenient assays that can distinguish latent from ongoing viral replication. Using episomal viral cDNA as a surrogate for ongoing replication, we previously presented evidence that viral replication persists in the majority of infected individuals with a sustained aviremic status. The labile nature of viral episomes and hence their validity as surrogate markers of ongoing replication in individuals with long-term-suppressed HIV-1 infection have been analyzed in short-term in vitro experiments with conflicting results. Since these in vitro experiments do not shed light on the long-term in vivo dynamics of episomal cDNA or recapitulate the natural targets of infection in vivo, we have analyzed the dynamics of episomal cDNA turnover in vivo by following the emergence of an M184V polymorphism in plasma viral RNA, in episomal cDNA, and in proviral DNA in patients on suboptimal therapies. We demonstrate that during acquisition of drug resistance, wild-type episomal cDNAs are replaced by M184V-harboring episomes. Importantly, a complete replacement of wild-type episomes with M184V-containing episomes occurred while proviruses remained wild type. This indicates that episomal cDNAs are turned over by degradation rather than through death or tissue redistribution of the infected cell itself. Therefore, evolution of episomal viral cDNAs is a valid surrogate of ongoing viral replication in HIV-1-infected individuals.


PLOS Pathogens | 2011

Episomal Viral cDNAs Identify a Reservoir That Fuels Viral Rebound after Treatment Interruption and That Contributes to Treatment Failure

Mark Sharkey; Dunja Z. Babic; Thomas C. Greenough; Roy M. Gulick; Daniel R. Kuritzkes; Mario Stevenson

Viral reservoirs that persist in HIV-1 infected individuals on antiretroviral therapy (ART) are the major obstacle to viral eradication. The identification and definition of viral reservoirs in patients on ART is needed in order to understand viral persistence and achieve the goal of viral eradication. We examined whether analysis of episomal HIV-1 genomes provided the means to characterize virus that persists during ART and whether it could reveal the virus that contributes to treatment failure in patients on ART. For six individuals in which virus replication was highly suppressed for at least 20 months, proviral and episomal genomes present just prior to rebound were phylogenetically compared to RNA genomes of rebounding virus after therapy interruption. Episomal envelope sequences, but not proviral envelope sequences, were highly similar to sequences in rebounding virus. Since episomes are products of recent infections, the phylogenetic relationships support the conclusion that viral rebound originated from a cryptic viral reservoir. To evaluate whether the reservoir revealed by episomal sequence analysis was of clinical relevance, we examined whether episomal sequences define a viral population that contributes to virologic failure in individuals receiving the CCR5 antagonist, Vicriviroc. Episomal envelope sequences at or near baseline predicted treatment failure due to the presence of X4 or D/M (dual/mixed) viral variants. In patients that did not harbor X4 or D/M viruses, the basis for Vicriviroc treatment failure was indeterminate. Although these samples were obtained from viremic patients, the assay would be applicable to a large percentage of aviremic patients, based on previous studies. Summarily, the results support the use of episomal HIV-1 as an additional or alternative approach to traditional assays to characterize virus that is maintained during long-term, suppressive ART.

Collaboration


Dive into the Mark Sharkey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine Luzuriaga

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Natalia Sharova

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Sullivan

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Kuritzkes

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Karine Triques

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ruzena Wiersum Stranska

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge