Mark Sokolowski
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Sokolowski.
Nucleic Acids Research | 2014
Dawn deHaro; Kristine J. Kines; Mark Sokolowski; Robert T. Dauchy; Vincent A. Streva; Steven M. Hill; John P. Hanifin; George C. Brainard; David E. Blask; Victoria P. Belancio
Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption.
Nucleic Acids Research | 2014
Kristine J. Kines; Mark Sokolowski; Dawn deHaro; Claiborne M. Christian; Victoria P. Belancio
Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5′-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations. However, mutations leading to premature stop codons within the L1 ORF2 sequence may yield truncated proteins that retain a functional endonuclease domain. We demonstrate that some truncated ORF2 proteins cause varying levels of toxicity and DNA damage when chronically overexpressed in mammalian cells. Furthermore, transfection of some ORF2 constructs containing premature stop codons supported low levels of Alu retrotransposition, demonstrating the potential for select retrotranspositionally-incompetent L1 loci to generate genomic instability. This result suggests yet another plausible explanation for the relative success of Alu elements in populating the human genome. Our data suggest that a subset of retrotranspositionally-incompetent L1s, previously considered to be harmless to genomic integrity, may have the potential to cause chronic DNA damage by introducing DSBs and mobilizing Alu. These results imply that the number of known L1 loci in the human genome that potentially threaten its stability may not be limited to the retrotranspositionally active loci.
PLOS ONE | 2013
Mark Sokolowski; Dawn deHaro; Claiborne M. Christian; Kristine J. Kines; Victoria P. Belancio
Long INterspersed Element-1 (LINE-1, L1) is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP) intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p) encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H) system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu) RNP nuclear access in the host cell.
Mobile Dna | 2014
Mark Sokolowski; Cecily B DeFreece; Geraldine Servant; Kristine J. Kines; Dawn deHaro; Victoria P. Belancio
BackgroundLINE-1 (L1) retrotransposons are common occupants of mammalian genomes representing about a fifth of the genetic content. Ongoing L1 retrotransposition in the germ line and somatic tissues has contributed to structural genomic variations and disease-causing mutations in the human genome. L1 mobilization relies on the function of two, self-encoded proteins, ORF1 and ORF2. The ORF2 protein contains two characterized domains: endonuclease and reverse transcriptase.ResultsUsing a bacterially purified endonuclease domain of the human L1 ORF2 protein, we have generated a monoclonal antibody specific to the human ORF2 protein. We determined that the epitope recognized by this monoclonal antibody includes amino acid 205, which is required for the function of the L1 ORF2 protein endonuclease. Using an in vitro L1 cleavage assay, we demonstrate that the monoclonal anti-ORF2 protein antibody partially inhibits L1 endonuclease activity without having any effect on the in vitro activity of the human AP endonuclease.ConclusionsOverall, our data demonstrate that this anti-ORF2 protein monoclonal antibody is a useful tool for human L1-related studies and that it provides a rationale for the development of antibody-based inhibitors of L1-induced damage.
Nucleic Acids Research | 2017
Mark Sokolowski; May Chynces; Dawn deHaro; Claiborne M. Christian; Victoria P. Belancio
Abstract Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events.
Nucleic Acids Research | 2016
Claiborne M. Christian; Dawn deHaro; Kristine J. Kines; Mark Sokolowski; Victoria P. Belancio
Long Interspersed Element 1 (LINE-1 or L1) is capable of causing genomic instability through the activity of the L1 ORF2 protein (ORF2p). This protein contains endonuclease (EN) and reverse transcriptase (RT) domains that are necessary for the retrotransposition of L1 and the Short Interspersed Element (SINE) Alu. The functional importance of approximately 50% of the ORF2p molecule remains unknown, but some of these sequences could play a role in retrotransposition, or be necessary for the enzymatic activities of the EN and/or RT domains. Conventional approaches using the full-length, contiguous ORF2p make it difficult to study the involvement of these unannotated sequences in the function of L1 ORF2p. Our lab has developed a Bipartile Alu Retrotransposition (BAR) assay that relies on separate truncated ORF2p fragments: an EN-containing and an RT-containing fragment. We validated the utility of this method for studying the ORF2p function in retrotransposition by assessing the effect of expression levels and previously characterized mutations on BAR. Using BAR, we identified two pairs of amino acids important for retrotransposition, an FF and a WD. The WD appears to play a role in cDNA synthesis by the ORF2p molecule, despite being outside the canonical RT domain.
Mobile Dna | 2016
Kristine J. Kines; Mark Sokolowski; Dawn deHaro; Claiborne M. Christian; Melody Baddoo; Madison E. Smither; Victoria P. Belancio
BackgroundApproximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs). Additionally, L1 is responsible for structural genomic variations induced by other transposable elements such as Alu and SVA, which rely on the L1 ORF2 protein for their propagation. Most of the genomic damage associated with L1 activity originates with the endonuclease domain of the ORF2 protein, which nicks the DNA in preparation for target-primed reverse transcription.ResultsBioinformatic analysis of full-length L1 loci residing in the human genome identified numerous mutations in the amino acid sequence of the ORF2 endonuclease domain. Some of these mutations were found in residues which were predicted to be phosphorylation sites for cellular kinases. We mutated several of these putative phosphorylation sites in the ORF2 endonuclease domain and investigated the effect of these mutations on the function of the full-length ORF2 protein and the endonuclease domain (ENp) alone. Most of the single and multiple point mutations that were tested did not significantly impact expression of the full-length ORF2p, or alter its ability to drive Alu retrotransposition. Similarly, most of those same mutations did not significantly alter expression of ENp, or impair its ability to induce DNA damage and cause toxicity.ConclusionsOverall, our data demonstrate that the full-length ORF2p or the ENp alone can tolerate several specific single and multiple point mutations in the endonuclease domain without significant impairment of their ability to support Alu mobilization or induce DNA damage, respectively.
Genetics | 2017
Claiborne M. Christian; Mark Sokolowski; Dawn deHaro; Kristine J. Kines; Victoria P. Belancio
Long interspersed element 1 (L1) is the only currently active autonomous retroelement in the human genome. Along with the parasitic SVA and short interspersed element Alu, L1 is the source of DNA damage induced by retrotransposition: a copy-and-paste process that has the potential to disrupt gene function and cause human disease. The retrotransposition process is dependent upon the ORF2 protein (ORF2p). However, it is unknown whether most of the protein is important for retrotransposition. In particular, other than the Cys motif, the C terminus of the protein has not been intensely examined in the context of retrotransposition. Using evolutionary analysis and the Alu retrotransposition assay, we sought to identify additional amino acids in the C terminus important for retrotransposition. Here, we demonstrate that Gal4-tagged and untagged C-terminally truncated ORF2p fragments possess residual potential to drive Alu retrotransposition. Using sight-directed mutagenesis we identify that while the Y1180 amino acid is important for ORF2p- and L1-driven Alu retrotransposition, a mutation at this position improves L1 retrotransposition. Even though the mechanism of the contribution of Y1180 to Alu and L1 mobilization remains unknown, experimental evidence rules out its direct involvement in the ability of the ORF2p reverse transcriptase to generate complementary DNA. Additionally, our data support that ORF2p amino acids 1180 and 1250–1262 may be involved in the reported ORF1p-mediated increase in ORF2p-driven Alu retrotransposition.
Cancer Research | 2018
Dawn deHaro; Claiborne M. Christian; T. May Chynces; Mark Sokolowski; Victoria P. Belancio
Purpose: The human retrotransposon Long Interspersed Element 1 (L1) can contribute to genomic instability through de novo retrotransposition events, some of which could be mutagenic. L1 has long been considered to have a role in a variety of human diseases driven by genomic instability, most notably cancer. Second-generation sequencing approaches demonstrated that many human cancers harbor numerous de novo L1 inserts. While these data reinforce the concept that L1-associated genomic instability and cancer are probably intertwined, direct experimental evidence establishing this connection and, importantly, the understanding of the circumstances underlying L1 contribution to the disease are missing. The lack of this knowledge is in part due to the shortage of mammalian models suitable for testing these hypotheses. Methods: We have developed a custom mouse model of human L1 retrotransposition by introducing a single copy of the human L1 transgene into the mouse genome using homologous recombination. Using this L1 transgenic model, the existing mouse models of human cancer, and a custom quantitative droplet digital PCR assay for measuring de novo mobilization of the human L1 transgene, we have investigated the impact of genetic defects in two DNA-repair pathways on accumulation of the L1 transgene-induced genomic instability in somatic tissues in vivo. Results: Our data demonstrate that all tested mouse organs support de novo L1 retrotransposition events. The occurrence of these events is stochastic as there is significant individual variation among transgenic mice. Our data also demonstrate that both tested genetic defects promote L1 retrotransposition in vivo in a dose-dependent manner as demonstrated by the comparison of L1 mobilization between the wild-type mice and mice hetero- or homozygous for the defect. Conclusions: The development of the custom transgenic mouse model of human L1 retrotransposition has allowed us to determine that a loss of function of a single DNA-repair gene is sufficient to increase L1-induced genomic instability in somatic mammalian tissues. These findings provide important proof-of-principle results that tumor-specific DNA-repair defects impact L1 retrotransposition in mammalian tissues in vivo. These findings also provide critical insights as to when accumulation of L1 damage may take place during tumorigenesis. These findings have important implications for cancer patients because they suggest that tumor-specific DNA-repair defects may influence the amount of genomic instability associated with DNA damage from L1 elements in vivo. Ongoing results will be discussed. Citation Format: Dawn deHaro, Claiborne M. Christian, T. May Chynces, Mark Sokolowski, Victoria P. Belancio. The use of mouse models for understanding the in vivo impact of cancer-relevant genetic defects on genomic instability induced by human LINE-1 retrotransposon [abstract]. In: Proceedings of the AACR Special Conference: Advances in Modeling Cancer in Mice: Technology, Biology, and Beyond; 2017 Sep 24-27; Orlando, Florida. Philadelphia (PA): AACR; Cancer Res 2018;78(10 Suppl):Abstract nr B27.
Archive | 2016
Kristine J. Kines; Mark Sokolowski; Dawn deHaro; Claiborne M. Christian; Melody Baddoo; Madison E. Smither; Victoria P. Belancio