Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark T. Fisher is active.

Publication


Featured researches published by Mark T. Fisher.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles

Hiroo Katayama; J. Wang; F. Tama; L. Chollet; Edward P. Gogol; R. J. Collier; Mark T. Fisher

A major goal in understanding the pathogenesis of the anthrax bacillus is to determine how the protective antigen (PA) pore mediates translocation of the enzymatic components of anthrax toxin across membranes. To obtain structural insights into this mechanism, we constructed PA-pore membrane complexes and visualized them by using negative-stain electron microscopy. Two populations of PA pores were visualized in membranes, vesicle-inserted and nanodisc-inserted, allowing us to reconstruct two virtually identical PA-pore structures at 22-Å resolution. Reconstruction of a domain 4-truncated PA pore inserted into nanodiscs showed that this domain does not significantly influence pore structure. Normal mode flexible fitting of the x-ray crystallographic coordinates of the PA prepore indicated that a prominent flange observed within the pore lumen is formed by the convergence of mobile loops carrying Phe427, a residue known to catalyze protein translocation. Our results have identified the location of a crucial functional element of the PA pore and documented the value of combining nanodisc technology with electron microscopy to examine the structures of membrane-interactive proteins.


Nature Structural & Molecular Biology | 2008

GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore

Hiroo Katayama; Blythe E. Janowiak; Marek Brzozowski; Jordan Juryck; Scott Falke; Edward P. Gogol; R. John Collier; Mark T. Fisher

We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.


Journal of Biological Chemistry | 1995

Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.

Kirk E. Smith; Mark T. Fisher

Efficient renaturation of urea-denatured rhodanese using the chaperonin GroE system requires GroEL, GroES, and ATP. At high concentrations this renaturation also requires the substrate thiosulfate to have been present during GroEL-rhodanese complex formation. When thiosulfate is present the GroEL-rhodanese complex can be concentrated to greater than 1 mg/ml rhodanese with little effect on the efficiency of renaturation. However, if complex is formed in the absence of thiosulfate, renaturation of rhodanese in the presence of thiosulfate shows a critical concentration of approximately 0.4 mg/ml, above which renaturation yields drop dramatically. This critical concentration appears to be related to an aggregation event in the refolding of rhodanese. The nucleotide free or ADP-bound form of GroEL also binds to rhodanese that has been either already renatured or never denatured. The bound rhodanese has no activity but can be released from GroEL with ATP recovering 90% of control activity. The data presented herein support a release and rebinding mechanism for the GroE-assisted refolding of rhodanese. It also suggests GroEL binds several protein folding intermediates along the entire refolding pathway.


Archives of Biochemistry and Biophysics | 1985

High-pressure investigations of cytochrome P-450 spin and substrate binding equilibria.

Mark T. Fisher; Suzanne Scarlata; Stephen G. Sligar

The effects of high pressure (1-2000 bar) on the spin state and substrate binding equilibria in cytochrome P-450 have been determined. The high-spin (S = 5/2) to low spin (S = 1/2) transition of the ferric hemoprotein was monitored by uv-visible spectroscopy at various substrate concentrations. Increasing hydrostatic pressure on a sample of substrate-bound cytochrome P-450 resulted in a decrease in the high-spin fraction as monitored by a Soret maxima at 391 nm and an increase in the low-spin 417-nm region of the spectrum. These pressure-induced optical changes were totally reversible for all pressures below 800 bar and were found to correspond to simple substrate dissociation from the enzyme. High levels of the normally metabolized substrate, d-camphor, corresponding to a 99.9% saturation of the hemoprotein active site (50 mM Tris-Cl, 100 mM KCl, pH 7.2) completely prevented the pressure-induced high-spin to low-spin transition that is observed at less than saturating substrate concentrations. A gradual increase in the formation of the inactive P-420 form of the cytochrome was noted if the pressure of the sample was increased above 800 bar. These pressure-linked spectral changes were used to determine the microscopic volume change accompanying substrate binding, which was found to be -47.0 +/- 2 ml/mol (pH 7.2) which represents a substantial change for a ligand dissociation reaction. The observed volume change for camphor binding decreases to -30.6 +/- 2 ml/mol at pH 6.0, suggesting the involvement of a linked proton equilibrium. Various substrate analogs of camphor induce varying degrees of low-spin to high-spin shift upon binding to ferric cytochrome P-450 (3). The volume changes for the dissociation of these substrates were very similar to those obtained with camphor. The conformational changes associated with a shift from high- to low-spin ferric iron appear to be small in comparison to the overall macroscopic changes in volume accompanying substrate binding to the enzyme.


Protein Science | 2013

Three dimensional structure of the anthrax toxin translocon–lethal factor complex by cryo‐electron microscopy

Edward P. Gogol; Narahari Akkaladevi; L. Szerszen; Srayanta Mukherjee; L. Chollet-Hinton; Hiroo Katayama; Brad L. Pentelute; R. J. Collier; Mark T. Fisher

We have visualized by cryo‐electron microscopy (cryo‐EM) the complex of the anthrax protective antigen (PA) translocon and the N‐terminal domain of anthrax lethal factor (LFN) inserted into a nanodisc model lipid bilayer. We have determined the structure of this complex at a nominal resolution of 16 Å by single‐particle analysis and three‐dimensional reconstruction. Consistent with our previous analysis of negatively stained unliganded PA, the translocon comprises a globular structure (cap) separated from the nanodisc bilayer by a narrow stalk that terminates in a transmembrane channel (incompletely distinguished in this reconstruction). The globular cap is larger than the unliganded PA pore, probably due to distortions introduced in the previous negatively stained structures. The cap exhibits larger, more distinct radial protrusions, previously identified with PA domain three, fitted by elements of the NMFF PA prepore crystal structure. The presence of LFN, though not distinguished due to the seven‐fold averaging used in the reconstruction, contributes to the distinct protrusions on the cap rim volume distal to the membrane. Furthermore, the lumen of the cap region is less resolved than the unliganded negatively stained PA, due to the low contrast obtained in our images of this specimen. Presence of the LFN extended helix and N terminal unstructured regions may also contribute to this additional internal density within the interior of the cap. Initial NMFF fitting of the cryoEM‐defined PA pore cap region positions the Phe clamp region of the PA pore translocon directly above an internal vestibule, consistent with its role in toxin translocation.


Journal of Pharmaceutical Sciences | 2000

Refolding a Glutamine Synthetase Truncation Mutant In Vitro: Identifying Superior Conditions Using a Combination of Chaperonins and Osmolytes

Paul A. Voziyan; Lalita Jadhav; Mark T. Fisher

A new method that uses a combination of bacterial GroE chaperonins and cellular osmolytes for in vitro protein folding is described. With this method, one can form stable chaperonin-protein folding intermediate complexes to prevent deleterious protein aggregation and, using these complexes, screen a large array of osmolyte solutions to rapidly identify the superior folding conditions. As a test substrate, we used GSDelta468, a truncation mutant of bacterial glutamine synthetase (GS) that cannot be refolded to significant yields in vitro with either chaperones or osmolytes alone. When our chaperonin/osmolyte method was employed to identify and optimize GSDelta468 refolding conditions, 67% of enzyme activity was recovered, comparable with refolding yields of wild type GS. This method can potentially be applied to the refolding of a broad spectrum of proteins.


Biochimica et Biophysica Acta | 1994

Refolding and release of tubulins by a functional immobilized groEL column.

Sangita Phadtare; Mark T. Fisher; Lynwood R. Yarbrough

Denatured tubulins form stable complexes with groEL upon dilution into refolding buffer. These complexes are retained on an immunoaffinity column which contains chemically immobilized antibodies to groEL. Tubulin remains bound to the immobilized groEL column after extensive washing and is released upon incubation with groES and ATP. Similar results were obtained with glutamine synthetase. These data suggest that groEL can function while it is attached to a solid support system.


Biochemical and Biophysical Research Communications | 1990

Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by antibiotic 1233A and other β-lactones

Ruth J. Mayer; Pearl Louis-Flamberg; John D. Elliott; Mark T. Fisher; Jack Dale Leber

3-Hydroxy-3-methylglutaryl CoA synthase was shown to be inhibited in a time-dependent, irreversible manner by compounds containing the substituted beta-lactone functionality found in the natural product 1233A. The rate of inactivation (kinact) was found to approach the rate of catalysis (kcat). The inactivation was irreversible over several hours. A related compound lacking the hydroxymethyl substituent on the beta-lactone ring is a reversible inhibitor and is competitive with respect to acetylCoA. The results are consistent with beta-lactone ring opening by the active site Cys to form an enzyme bound thioester.


Protein Science | 2013

Assembly of anthrax toxin pore: Lethal-factor complexes into lipid nanodiscs

Narahari Akkaladevi; L. Hinton-Chollet; Hiroo Katayama; J. Mitchell; L. Szerszen; Srayanta Mukherjee; Edward P. Gogol; Brad L. Pentelute; R. J. Collier; Mark T. Fisher

We have devised a procedure to incorporate the anthrax protective antigen (PA) pore complexed with the N‐terminal domain of anthrax lethal factor (LFN) into lipid nanodiscs and analyzed the resulting complexes by negative‐stain electron microscopy. Insertion into nanodiscs was performed without relying on primary and secondary detergent screens. The preparations were relatively pure, and the percentage of PA pore inserted into nanodiscs on EM grids was high (∼43%). Three‐dimensional analysis of negatively stained single particles revealed the LFN‐PA nanodisc complex mirroring the previous unliganded PA pore nanodisc structure, but with additional protein density consistent with multiple bound LFN molecules on the PA cap region. The assembly procedure will facilitate collection of higher resolution cryo‐EM LFN‐PA nanodisc structures and use of advanced automated particle selection methods.


Journal of Biological Chemistry | 1998

Partitioning of Rhodanese onto GroEL CHAPERONIN BINDS A REVERSIBLY OXIDIZED FORM DERIVED FROM THE NATIVE PROTEIN

Kirk E. Smith; Paul A. Voziyan; Mark T. Fisher

The mammalian mitochondrial enzyme, rhodanese, can form stable complexes with the Escherichia colichaperonin GroEL if it is either refolded from 8 m urea in the presence of chaperonin or is simply added to the chaperonin as the folded conformer at 37 °C. In the presence of GroEL, the kinetic profile of the inactivation of native rhodanese followed a single exponential decay. Initially, the inactivation rates showed a dependence on the chaperonin concentration but reached a constant maximum value as the GroEL concentration increased. Over the same time period, in the absence of GroEL, native rhodanese showed only a small decline in activity. The addition of a non-denaturing concentration of urea accelerated the inactivation and partitioning of rhodanese onto GroEL. These results suggest that the GroEL chaperonin may facilitate protein unfolding indirectly by interacting with intermediates that exist in equilibrium with native rhodanese. The activity of GroEL-bound rhodanese can be completely recovered upon addition of GroES and ATP. The reactivation kinetics and commitment rates for GroEL-rhodanese complexes prepared from either unfolded or native rhodanese were identical. However, when rhodanese was allowed to inactivate spontaneously in the absence of GroEL, no recovery of activity was observed upon addition of GroEL, GroES, and ATP. Interestingly, the partitioning of rhodanese and its subsequent inactivation did not occur when native rhodanese and GroEL were incubated under anaerobic conditions. Thus, our results strongly suggest that the inactive intermediate that partitions onto GroEL is the reversibly oxidized form of rhodanese.

Collaboration


Dive into the Mark T. Fisher's collaboration.

Top Co-Authors

Avatar

Edward P. Gogol

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Voziyan

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley L. Pentelute

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge