Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark T. Heise is active.

Publication


Featured researches published by Mark T. Heise.


Nature | 2008

NLRX1 is a regulator of mitochondrial antiviral immunity

Chris B. Moore; Daniel T. Bergstralh; Joseph A. Duncan; Yu Lei; Thomas E. Morrison; Albert G. Zimmermann; Mary Ann Accavitti-Loper; Victoria J. Madden; Lijun Sun; Zhengmao Ye; John D. Lich; Mark T. Heise; Zhijian J. Chen; Jenny P.-Y. Ting

The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-β promoter activity and in the disruption of virus-induced RLH–MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.


The Lancet | 2012

Chikungunya: a re-emerging virus

Felicity J. Burt; Micheal S Rolph; Nestor E. Rulli; Suresh Mahalingam; Mark T. Heise

In the past decade, chikungunya--a virus transmitted by Aedes spp mosquitoes--has re-emerged in Africa, southern and southeastern Asia, and the Indian Ocean Islands as the cause of large outbreaks of human disease. The disease is characterised by fever, headache, myalgia, rash, and both acute and persistent arthralgia. The disease can cause severe morbidity and, since 2005, fatality. The virus is endemic to tropical regions, but the spread of Aedes albopictus into Europe and the Americas coupled with high viraemia in infected travellers returning from endemic areas increases the risk that this virus could establish itself in new endemic regions. This Seminar focuses on the re-emergence of this disease, the clinical manifestations, pathogenesis of virus-induced arthralgia, diagnostic techniques, and various treatment modalities.


Genome Research | 2011

Genetic analysis of complex traits in the emerging Collaborative Cross

David L. Aylor; William Valdar; Wendy Foulds-Mathes; Ryan J. Buus; Ricardo A. Verdugo; Ralph S. Baric; Martin T. Ferris; Jeffrey A. Frelinger; Mark T. Heise; Matt Frieman; Lisa E. Gralinski; Timothy A. Bell; John D. Didion; Kunjie Hua; Derrick L. Nehrenberg; Christine L. Powell; Jill Steigerwalt; Yuying Xie; Samir N. Kelada; Francis S. Collins; Ivana V. Yang; David A. Schwartz; Lisa A. Branstetter; Elissa J. Chesler; Darla R. Miller; Jason S. Spence; Eric Yi Liu; Leonard McMillan; Abhishek Sarkar; Jeremy Wang

The Collaborative Cross (CC) is a mouse recombinant inbred strain panel that is being developed as a resource for mammalian systems genetics. Here we describe an experiment that uses partially inbred CC lines to evaluate the genetic properties and utility of this emerging resource. Genome-wide analysis of the incipient strains reveals high genetic diversity, balanced allele frequencies, and dense, evenly distributed recombination sites-all ideal qualities for a systems genetics resource. We map discrete, complex, and biomolecular traits and contrast two quantitative trait locus (QTL) mapping approaches. Analysis based on inferred haplotypes improves power, reduces false discovery, and provides information to identify and prioritize candidate genes that is unique to multifounder crosses like the CC. The number of expression QTLs discovered here exceeds all previous efforts at eQTL mapping in mice, and we map local eQTL at 1-Mb resolution. We demonstrate that the genetic diversity of the CC, which derives from random mixing of eight founder strains, results in high phenotypic diversity and enhances our ability to map causative loci underlying complex disease-related traits.


Journal of Virology | 2007

Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane

Matthew B. Frieman; Boyd Yount; Mark T. Heise; Sarah A. Kopecky-Bromberg; Peter Palese; Ralph S. Baric

ABSTRACT The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.


Science | 2014

Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance

Angela L. Rasmussen; Atsushi Okumura; Martin T. Ferris; Richard Green; Friederike Feldmann; Sara Kelly; Dana P. Scott; David Safronetz; Elaine Haddock; Rachel LaCasse; Matthew J. Thomas; Pavel Sova; Victoria S. Carter; Jeffrey M. Weiss; Darla R. Miller; Ginger D. Shaw; Marcus J. Korth; Mark T. Heise; Ralph S. Baric; Fernando Pardo-Manuel de Villena; Heinz Feldmann; Michael G. Katze

Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Intercrossed mice infected with Ebola virus show a spectrum of pathology from prolonged coagulation to total resistance. Variety of Ebola symptoms in mice Apart from monkeys, there are no animal models available that show the same symptoms of Ebola virus infection as those of humans. Rasmussen et al. tested the effects of Ebola virus in mice with defined genetic backgrounds in a series of pains-taking experiments performed under stringent biosafety conditions. Resistance and susceptibility to Ebola virus was associated with distinct genetic profiles in inflammation, blood coagulation, and vascular function. This panel of mice could prove valuable for preliminary screens of candidate therapeutics and vaccines. Science, this issue p. 987


Mbio | 2010

Unique Signatures of Long Noncoding RNA Expression in Response to Virus Infection and Altered Innate Immune Signaling

Xinxia Peng; Lisa E. Gralinski; Christopher D. Armour; Martin T. Ferris; Matthew J. Thomas; Sean Proll; Birgit G. Bradel-Tretheway; Marcus J. Korth; John Castle; Matthew Biery; Heather Bouzek; David R. Haynor; Matthew B. Frieman; Mark T. Heise; Christopher K. Raymond; Ralph S. Baric; Michael G. Katze

ABSTRACT Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs. IMPORTANCE Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, there is growing evidence that thousands of non-protein-coding RNAs (ncRNAs) are transcribed from mammalian genomes. While most attention to the involvement of ncRNAs in virus-host interactions has been on small ncRNAs such as microRNAs, it is becoming apparent that many long ncRNAs (>200 nucleotides [nt]) are also biologically important. These long ncRNAs have been found to have widespread functionality, including chromatin modification and transcriptional regulation and serving as the precursors of small RNAs. With the advent of next-generation sequencing technologies, whole-transcriptome analysis of the host response, including long ncRNAs, is now possible. Using this approach, we demonstrated that virus infection alters the expression of numerous long ncRNAs, suggesting that these RNAs may be a new class of regulatory molecules that play a role in determining the outcome of infection. Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, there is growing evidence that thousands of non-protein-coding RNAs (ncRNAs) are transcribed from mammalian genomes. While most attention to the involvement of ncRNAs in virus-host interactions has been on small ncRNAs such as microRNAs, it is becoming apparent that many long ncRNAs (>200 nucleotides [nt]) are also biologically important. These long ncRNAs have been found to have widespread functionality, including chromatin modification and transcriptional regulation and serving as the precursors of small RNAs. With the advent of next-generation sequencing technologies, whole-transcriptome analysis of the host response, including long ncRNAs, is now possible. Using this approach, we demonstrated that virus infection alters the expression of numerous long ncRNAs, suggesting that these RNAs may be a new class of regulatory molecules that play a role in determining the outcome of infection.


Journal of Virology | 2006

Characterization of Ross River Virus Tropism and Virus-Induced Inflammation in a Mouse Model of Viral Arthritis and Myositis

Thomas E. Morrison; Alan C. Whitmore; Reed S. Shabman; Brett A. Lidbury; Suresh Mahalingam; Mark T. Heise

ABSTRACT Mosquito-borne alphaviruses are a significant cause of both encephalitic and arthritic disease in humans worldwide. In contrast to the encephalitic alphaviruses, the pathogenesis of alphavirus-induced arthritic disease is not well understood. Utilizing a mouse model of Ross River virus (RRV) disease, we found that the primary targets of RRV infection are bone, joint, and skeletal muscle tissues of the hind limbs in both outbred CD-1 mice and adult C57BL/6J mice. Moreover, histological analyses demonstrated that RRV infection resulted in severe inflammation of these tissues. Characterization of the inflammatory infiltrate within the skeletal muscle tissue identified inflammatory macrophages, NK cells, and CD4+ and CD8+ T lymphocytes. To determine the contribution of the adaptive immune system, the outcome of RRV-induced disease was examined in C57BL/6J RAG-1−/− mice, which lack functional T and B lymphocytes. RAG-1−/− and wild-type mice developed similar disease signs, infiltration of inflammatory macrophages and NK cells, and muscle pathology, suggesting that the adaptive immune response does not play a critical role in the development of disease. These results establish the mouse model of RRV disease as a useful system for the identification of viral and host factors that contribute to alphavirus-induced arthritis and myositis.


American Journal of Pathology | 2011

A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence.

Thomas E. Morrison; Lauren Oko; Stephanie A. Montgomery; Alan C. Whitmore; Alina R. Lotstein; Bronwyn M. Gunn; Susan A. Elmore; Mark T. Heise

Chikungunya virus (CHIKV), an emerging mosquito-borne Alphavirus, causes debilitating rheumatic disease in humans that can last for weeks to months. Starting in 2004, a CHIKV outbreak in the Indian Ocean region affected millions of people, and infected travelers introduced CHIKV to new regions. The pathogenesis of CHIKV is poorly understood, and no approved vaccines or specific therapies exist. A major challenge to the study of CHIKV disease is the lack of a small animal model that recapitulates the major outcomes of human infection. In this study, the pathogenesis of CHIKV in C57BL/6J mice was investigated using biological and molecular clones of CHIKV isolated from human serum (CHIKV SL15649). After 14-day-old mice were inoculated with CHIKV SL15649 in the footpad, they displayed reduced weight gain and swelling of the inoculated limb. Histologic analysis of hind limb sections revealed severe necrotizing myositis, mixed inflammatory cell arthritis, chronic active tenosynovitis, and multifocal vasculitis. Interestingly, these disease signs and viral RNA persisted in musculoskeletal tissues for at least 3 weeks after inoculation. This work demonstrates the development of a mouse model of CHIKV infection with clinical manifestations and histopathologic findings that are consistent with the disease signs of CHIKV-infected humans, providing a useful tool for studying viral and host factors that drive CHIKV pathogenesis and for evaluating potential therapeutics against this emerging viral disease.


PLOS Pathogens | 2013

Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

Pankaj Pal; Kimberly A. Dowd; James D. Brien; Melissa A. Edeling; Sergey Gorlatov; Syd Johnson; Iris Lee; Wataru Akahata; Gary J. Nabel; Mareike K. S. Richter; Jolanda M. Smit; Daved H. Fremont; Theodore C. Pierson; Mark T. Heise; Michael S. Diamond

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


Cancer Discovery | 2014

A Gnotobiotic Mouse Model Demonstrates that Dietary Fiber Protects Against Colorectal Tumorigenesis in a Microbiota- and Butyrate-Dependent Manner

Dallas R. Donohoe; Darcy Holley; Leonard B. Collins; Stephanie A. Montgomery; Alan C. Whitmore; Andrew Hillhouse; Kaitlin P. Curry; Sarah W. Renner; Alicia Greenwalt; Elizabeth P. Ryan; Virginia Godfrey; Mark T. Heise; Deborah S. Threadgill; Anna Han; James A. Swenberg; David W. Threadgill; Scott J. Bultman

UNLABELLED Whether dietary fiber protects against colorectal cancer is controversial because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumor-suppressive properties in colorectal cancer cell lines. We used gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as a histone deacetylase (HDAC) inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared with normal colonic tissues. SIGNIFICANCE These results, which link diet and microbiota to a tumor-suppressive metabolite, provide insight into conflicting epidemiologic findings and suggest that probiotic/prebiotic strategies can modulate an endogenous HDAC inhibitor for anticancer chemoprevention without the adverse effects associated with synthetic HDAC inhibitors used in chemotherapy.

Collaboration


Dive into the Mark T. Heise's collaboration.

Top Co-Authors

Avatar

Ralph S. Baric

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alan C. Whitmore

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Morrison

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Martin T. Ferris

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kristin M. Long

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Gralinski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Boyd Yount

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pardo-Manuel de Villena

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert E. Johnston

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge