Mark Teese
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Teese.
Indian Journal of Microbiology | 2008
Colin Scott; Gunjan Pandey; Carol J. Hartley; Colin J. Jackson; Matthew J. Cheesman; Matthew C. Taylor; Rinku Pandey; Jeevan Khurana; Mark Teese; Christopher W. Coppin; Khali Weir; Rakesh K. Jain; Rup Lal; Robyn J. Russell; John G. Oakeshott
Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmental impacts of pesticide residues. This review describes examples of enzymes possessing the major activities employed in the bioremediation of pesticide residues, and some of the strategies by which they are employed. In addition, several examples of specific achievements in enzyme engineering are considered, highlighting the growing trend in tailoring enzymatic activity to a specific biotechnologically relevant function.
Insect Biochemistry and Molecular Biology | 2010
Mark Teese; Peter M. Campbell; Colin Scott; Karl H.J. Gordon; Adam Southon; Daniel Hovan; Charles Robin; Robyn J. Russell; John G. Oakeshott
Some of the resistance of Helicoverpa armigera to conventional insecticides such as organophosphates and synthetic pyrethroids appears to be due to metabolic detoxification by carboxylesterases. To investigate the H. armigera carboxyl/cholinesterases, we created a data set of 39 putative paralogous H. armigera carboxyl/cholinesterase sequences from cDNA libraries and other sources. Phylogenetic analysis revealed a close relationship between these sequences and 70 carboxyl/cholinesterases from the recently sequenced genome of the silkworm, Bombyx mori, including several conserved clades of non-catalytic proteins. A juvenile hormone esterase candidate from H. armigera was identified, and B. mori orthologues were proposed for 31% of the sequences examined, however low similarity was found between lepidopteran sequences and esterases previously associated with insecticide resistance from other insect orders. A proteomic analysis of larval esterases then enabled us to match seven of the H. armigera carboxyl/cholinesterase sequences to specific esterase isozymes. All identified sequences were predicted to encode catalytically active carboxylesterases, including six proteins with N-terminal signal peptides and N-glycans, with two also containing C-terminal signals for glycosylphosphatidylinositol anchor attachment. Five of these sequences were matched to zones of activity on native PAGE at relative mobility values previously associated with insecticide resistance in this species.
Biochemistry | 2015
Mark Teese; Dieter Langosch
Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane.
Journal of Biotechnology | 2012
Joachim Jose; Ruth Maas; Mark Teese
To display an enzyme on the surface of a living cell is an important step forward towards a broader use of biocatalysts. Enzymes immobilized on surfaces appeared to be more stable compared to free molecules. It is possible by standard techniques to let the bacterial cell (e.g. Escherichia coli) decorate its surface with the enzyme and produce it on high amounts with a minimum of costs and equipment. Moreover, these cells can be recovered and reused in several subsequent process cycles. Among other systems, autodisplay has some extra features that could overcome limitations in the industrial applications of enzymes. One major advantage of autodisplay is the motility of the anchoring domain. Enzyme subunits exposed at the cell surface having affinity to each other will spontaneously form dimers or multimers. Using autodisplay enzymes with prosthetic groups can be displayed, expanding the application of surface display to the industrial important P450 enzymes. Finally, up to 10⁵-10⁶ enzyme molecules can be displayed on a single cell. In the present review, we summarize recent achievements in the autodisplay of enzymes with particular attention to industrial needs and process development. Applications that will provide sustainable solutions towards a bio-based industry are discussed.
Insect Biochemistry and Molecular Biology | 2011
Shuwen Wu; Yihua Yang; Guorui Yuan; Peter M. Campbell; Mark Teese; Robyn J. Russell; John G. Oakeshott; Yidong Wu
Enhanced detoxification is the major mechanism responsible for pyrethroid resistance in Chinese populations of Helicoverpa armigera. Previous work has shown that enhanced oxidation contributes to resistance in the fenvalerate-selected Chinese strain, YGF. The current study provides evidence that enhanced hydrolysis by esterase isozymes also contributes to the resistance in this strain. The average esterase activity of third instar YGF larvae was 1.9-fold compared with that of a susceptible SCD strain. Much of this difference was attributed to isozymes at two zones which hydrolysed the model carboxylester substrate 1-naphthyl acetate and also a 1-naphthyl analogue of fenvalerate. A preparation enriched for enzymes migrating to one of these zones from YGF was shown to hydrolyse fenvalerate with a specific activity of about 2.9 nmol/min/mg. This material was also matched by mass spectrometry with four putative carboxylesterase genes, all of which clustered within a phylogenetic clade of secreted midgut esterases. Quantitative PCR on these four genes showed several-fold greater expression in tissues of YGF compared to SCD but no differences was found in the number of copies of the genes between the strains.
Journal of Biotechnology | 2012
Stephanie D. Schumacher; Frank Hannemann; Mark Teese; Rita Bernhardt; Joachim Jose
Cytochrome P450 enzymes catalyse a wide variety of reactions, including the hydroxylation and epoxidation of CC bonds, and dealkylation reactions. There is high interest in these reactions for biotechnology and pharmaceutical processes. Many P450s require membrane surroundings and have substrates that do not cross biological membranes. To circumvent these obstacles, CYP106A2 from Bacillus megaterium was expressed on the outer membrane of Escherichia coli cells by Autodisplay. Exposure on the surface was confirmed by a protease accessibility test and flow cytometry after immunolabelling. HPLC assays showed that 0.5 ml of cells displaying the enzyme (OD₅₇₈ = 6) converted 9.13 μmol of deoxycorticosterone to 15β-OH-deoxycorticosterone within 1h. Imipramine and abietic acid were also accepted as substrates. The number of active enzyme molecules per cell was calculated to be 20,000. Surprisingly, surface-exposed CYP106A2 was active in E. coli BL21 without the external addition of the heme group. However, when CYP106A2 was expressed on the surface of an E. coli strain lacking the TolC channel protein (JW5503), enzymatic activity was almost completely abolished. The activity of CYP106A2 on the surface of E. coli JW5503 could be restored by the external addition of the heme group. This suggests, as has been reported before, that E. coli uses a TolC-dependent mechanism to export heme into the growth media, where it can be scavenged by a surface-displayed apoenzyme. Our results indicate that Autodisplay enables the functional surface display of P450 enzymes and provides a new platform to access their synthetic potential.
PLOS ONE | 2013
Yongqiang Li; Claire Farnsworth; Christopher W. Coppin; Mark Teese; Jian-Wei Liu; Colin Scott; Xing Zhang; Robyn J. Russell; John G. Oakeshott
Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes’ active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4–6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively.
PLOS ONE | 2013
Mark Teese; Claire Farnsworth; Yongqiang Li; Chris Coppin; A.L. Devonshire; Colin Scott; Peter D. East; Robyn J. Russell; John G. Oakeshott
Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.
Scientific Reports | 2017
Christoph Schanzenbach; Fabian C. Schmidt; Patrick Breckner; Mark Teese; Dieter Langosch
The assembly of integral membrane protein complexes is frequently supported by transmembrane domain (TMD) interactions. Here, we present the BLaTM assay that measures homotypic as well as heterotypic TMD-TMD interactions in a bacterial membrane. The system is based on complementation of β-lactamase fragments genetically fused to interacting TMDs, which confers ampicillin resistance to expressing cells. We validated BLaTM by showing that the assay faithfully reports known sequence-specific interactions of both types. In a practical application, we used BLaTM to screen a focussed combinatorial library for heterotypic interactions driven by electrostatic forces. The results reveal novel patterns of ionizable amino acids within the isolated TMD pairs. Those patterns indicate that formation of heterotypic TMD pairs is most efficiently supported by closely spaced ionizable residues of opposite charge. In addition, TMD heteromerization can apparently be driven by hydrogen bonding between basic or between acidic residues.
Applied Microbiology and Biotechnology | 2014
Agne Tubeleviciute; Mark Teese; Joachim Jose
A previously unidentified oxidoreductase from Escherichia coli catalyzes the regioselective reduction of eukaryotic steroid hormone 11-deoxycorticosterone (11-DOC) to the valuable bioactive product 4-pregnen-20,21-diol-3-one. In nature, a reduction of C-20 carbonyl of C21 steroids is catalyzed by diverse NAD(P)H-dependent oxidoreductases. Enzymes that possess 20-ketosteroid reductase activity, however, have never before been described in E. coli. Our present study aimed to identify and characterize the E. coli enzyme which possesses 20-ketosteroid reductase activity against eukaryotic steroid hormone 11-DOC. We partially purified the enzyme from E. coli DH5α using protein chromatography techniques. Mass spectrometry revealed the presence of three NADH-specific oxidoreductases in the sample. The genes encoding these oxidoreductases were cloned and overexpressed in E. coli UT5600 (DE3). Only the overexpression of 2-dehydro-3-deoxy-d-gluconate 5-dehydrogenase (KduD) encoded by kduD gene enabled the whole-cell biotransformation of 11-DOC. A 6xHis-tagged version of KduD was purified to homogeneity and found to reduce several eukaryotic steroid hormones and catalyze the conversion of novel sugar substrates. KduD from E. coli is therefore a promiscuous enzyme that has a predicted role in sugar conversion in vivo but can be used for the production of valuable bioactive 20-hydroxysteroids.
Collaboration
Dive into the Mark Teese's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs