Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Turmaine is active.

Publication


Featured researches published by Mark Turmaine.


Cell | 1997

Formation of Neuronal Intranuclear Inclusions Underlies the Neurological Dysfunction in Mice Transgenic for the HD Mutation

Stephen W. Davies; Mark Turmaine; Barbara Cozens; Marian DiFiglia; Alan H. Sharp; Christopher A. Ross; Eberhard Scherzinger; Erich Wanker; Laura Mangiarini; Gillian P. Bates

Huntingtons disease (HD) is one of an increasing number of human neurodegenerative disorders caused by a CAG/polyglutamine-repeat expansion. The mutation occurs in a gene of unknown function that is expressed in a wide range of tissues. The molecular mechanism responsible for the delayed onset, selective pattern of neuropathology, and cell death observed in HD has not been described. We have observed that mice transgenic for exon 1 of the human HD gene carrying (CAG)115 to (CAG)156 repeat expansions develop pronounced neuronal intranuclear inclusions, containing the proteins huntingtin and ubiquitin, prior to developing a neurological phenotype. The appearance in transgenic mice of these inclusions, followed by characteristic morphological change within neuronal nuclei, is strikingly similar to nuclear abnormalities observed in biopsy material from HD patients.


Cell | 1997

Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.

Eberhard Scherzinger; Rudi Lurz; Mark Turmaine; Laura Mangiarini; Birgit Hollenbach; Renate Hasenbank; Gillian P. Bates; Stephen W. Davies; Hans Lehrach; Erich Wanker

The mechanism by which an elongated polyglutamine sequence causes neurodegeneration in Huntingtons disease (HD) is unknown. In this study, we show that the proteolytic cleavage of a GST-huntingtin fusion protein leads to the formation of insoluble high molecular weight protein aggregates only when the polyglutamine expansion is in the pathogenic range. Electron micrographs of these aggregates revealed a fibrillar or ribbon-like morphology, reminiscent of scrapie prions and beta-amyloid fibrils in Alzheimers disease. Subcellular fractionation and ultrastructural techniques showed the in vivo presence of these structures in the brains of mice transgenic for the HD mutation. Our in vitro model will aid in an eventual understanding of the molecular pathology of HD and the development of preventative strategies.


Neuron | 2012

c-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration

P Arthur-Farraj; Morwena Latouche; D Wilton; Susanne Quintes; Elodie Chabrol; Annbily Banerjee; Ashwin Woodhoo; Billy Jenkins; Mary Rahman; Mark Turmaine; Grzegorz Wicher; Richard Mitter; Linda Greensmith; Axel Behrens; Gennadij Raivich; Rhona Mirsky; Kristjan R. Jessen

Summary The radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue.


Neuron | 1999

Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths.

Eric Parmantier; Bruce Lynn; Durward Lawson; Mark Turmaine; Soheila Sharghi Namini; Lisa Chakrabarti; Andrew P. McMahon; Kristjan R. Jessen; Rhona Mirsky

We show that Schwann cell-derived Desert hedgehog (Dhh) signals the formation of the connective tissue sheath around peripheral nerves. mRNAs for dhh and its receptor patched (ptc) are expressed in Schwann cells and perineural mesenchyme, respectively. In dhh-/- mice, epineurial collagen is reduced, while the perineurium is thin and disorganized, has patchy basal lamina, and fails to express connexin 43. Perineurial tight junctions are abnormal and allow the passage of proteins and neutrophils. In nerve fibroblasts, Dhh upregulates ptc and hedgehog-interacting protein (hip). These experiments reveal a novel developmental signaling pathway between glia and mesenchymal connective tissue and demonstrate its molecular identity in peripheral nerve. They also show that Schwann cell-derived signals can act as important regulators of nerve development.


Nature Neuroscience | 2009

Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity

Ashwin Woodhoo; Maria B Duran Alonso; Anna Droggiti; Mark Turmaine; Maurizio D'Antonio; David Parkinson; D Wilton; Raya Al-Shawi; Paul Simons; Jie Shen; François Guillemot; Freddy Radtke; Dies Meijer; M. Laura Feltri; Lawrence Wrabetz; Rhona Mirsky; Kristjan R. Jessen

Notch signaling is central to vertebrate development, and analysis of Notch has provided important insights into pathogenetic mechanisms in the CNS and many other tissues. However, surprisingly little is known about the role of Notch in the development and pathology of Schwann cells and peripheral nerves. Using transgenic mice and cell cultures, we found that Notch has complex and extensive regulatory functions in Schwann cells. Notch promoted the generation of Schwann cells from Schwann cell precursors and regulated the size of the Schwann cell pool by controlling proliferation. Notch inhibited myelination, establishing that myelination is subject to negative transcriptional regulation that opposes forward drives such as Krox20. Notably, in the adult, Notch dysregulation resulted in demyelination; this finding identifies a signaling pathway that induces myelin breakdown in vivo. These findings are relevant for understanding the molecular mechanisms that control Schwann cell plasticity and underlie nerve pathology, including demyelinating neuropathies and tumorigenesis.


Cancer Research | 2009

Magnetic Resonance Imaging of Mesenchymal Stem Cells Homing to Pulmonary Metastases Using Biocompatible Magnetic Nanoparticles

Michael R. Loebinger; Panagiotis G. Kyrtatos; Mark Turmaine; Anthony N. Price; Quentin A. Pankhurst; Mark F. Lythgoe; Sam M. Janes

The ability of mesenchymal stem cells (MSC) to specifically home to tumors has suggested their potential use as a delivery vehicle for cancer therapeutics. MSC integration into tumors has been shown in animal models using histopathologic techniques after animal sacrifice. Tracking the delivery and engraftment of MSCs into human tumors will need in vivo imaging techniques. We hypothesized that labeling MSCs with iron oxide nanoparticles would enable in vivo tracking with magnetic resonance imaging (MRI). Human MSCs were labeled in vitro with superparamagnetic iron oxide nanoparticles, with no effect on differentiation potential, proliferation, survival, or migration of the cells. In initial experiments, we showed that as few as 1,000 MSCs carrying iron oxide nanoparticles can be detected by MRI one month after their coinjection with breast cancer cells that formed subcutaneous tumors. Subsequently, we show that i.v.- injected iron-labeled MSCs could be tracked in vivo to multiple lung metastases using MRI, observations that were confirmed histologically. This is the first study to use MRI to track MSCs to lung metastases in vivo. This technique has the potential to show MSC integration into human tumors, allowing early-phase clinical studies examining MSC homing in patients with metastatic tumors.


The Lancet | 1998

Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions?

Stephen W. Davies; Kathryn Beardsall; Mark Turmaine; Marian DiFiglia; Neil Aronin; Gillian P. Bates

Neuronal intranuclear inclusions have been found in the brain of a transgenic mouse model of Huntingtons disease and in necropsy brain tissue of patients with Huntingtons disease. We suggest that neuronal intranuclear inclusions are the common neuropathology for all inherited diseases caused by expansion of polyglutamine repeats. We also suggest that patients with a pathological diagnosis of neuronal intranuclear hyaline inclusion disease may also have polyglutamine repeat expansions.


Biomaterials | 2012

A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration

Giorgia Totonelli; Panagiotis Maghsoudlou; Massimo Garriboli; Johannes Riegler; Giuseppe Orlando; Alan J. Burns; Nj Sebire; Virpi V. Smith; Jonathan M. Fishman; Marco Ghionzoli; Mark Turmaine; Martin A. Birchall; Anthony Atala; Shay Soker; Mark F. Lythgoe; Alexander M. Seifalian; Agostino Pierro; Simon Eaton; Paolo De Coppi

Management of intestinal failure remains a clinical challenge and total parenteral nutrition, intestinal elongation and/or transplantation are partial solutions. In this study, using a detergent-enzymatic treatment (DET), we optimize in rats a new protocol that creates a natural intestinal scaffold, as a base for developing functional intestinal tissue. After 1 cycle of DET, histological examination and SEM and TEM analyses showed removal of cellular elements with preservation of the native architecture and connective tissue components. Maintenance of biomechanical, adhesion and angiogenic properties were also demonstrated strengthen the idea that matrices obtained using DET may represent a valid support for intestinal regeneration.


Biomaterials | 2013

Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies

Giuseppe Orlando; Christopher Booth; Zhan Wang; Giorgia Totonelli; Christina L. Ross; Emma Moran; Marcus Salvatori; Panagiotis Maghsoudlou; Mark Turmaine; Ginger T. DeLario; Yousef Al-Shraideh; Umar Farooq; Alan C. Farney; Jeffrey Rogers; Samy S. Iskandar; Alan J. Burns; Frank C. Marini; Paolo De Coppi; Robert J. Stratta; Shay Soker

In the United States, more than 2600 kidneys are discarded annually, from the total number of kidneys procured for transplant. We hypothesized that this organ pool may be used as a platform for renal bioengineering and regeneration research. We previously showed that decellularization of porcine kidneys yields renal extracellular matrix (ECM) scaffolds that maintain their basic components, support cell growth and welfare in vitro and in vivo, and show an intact vasculature that, when such scaffolds are implanted in vivo, is able to sustain physiological blood pressure. The purpose of the current study was to test if the same strategy can be applied to discarded human kidneys in order to obtain human renal ECM scaffolds. The results show that the sodium dodecylsulfate-based decellularization protocol completely cleared the cellular compartment in these kidneys, while the innate ECM framework retained its architecture and biochemical properties. Samples of human renal ECM scaffolds stimulated angiogenesis in a chick chorioallantoic membrane assay. Importantly, the innate vascular network in the human renal ECM scaffolds retained its compliance. Collectively, these results indicate that discarded human kidneys are a suitable source of renal scaffolds and their use for tissue engineering applications may be more clinically applicable than kidneys derived from animals.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model

Jonathan M. Fishman; Mark W. Lowdell; Luca Urbani; Tahera Ansari; Alan J. Burns; Mark Turmaine; Janet North; Paul Sibbons; Alexander M. Seifalian; Kathryn J. Wood; Martin A. Birchall; Paolo De Coppi

Decellularized (acellular) scaffolds, composed of natural extracellular matrix, form the basis of an emerging generation of tissue-engineered organ and tissue replacements capable of transforming healthcare. Prime requirements for allogeneic, or xenogeneic, decellularized scaffolds are biocompatibility and absence of rejection. The humoral immune response to decellularized scaffolds has been well documented, but there is a lack of data on the cell-mediated immune response toward them in vitro and in vivo. Skeletal muscle scaffolds were decellularized, characterized in vitro, and xenotransplanted. The cellular immune response toward scaffolds was evaluated by immunohistochemistry and quantified stereologically. T-cell proliferation and cytokines, as assessed by flow cytometry using carboxy-fluorescein diacetate succinimidyl ester dye and cytometric bead array, formed an in vitro surrogate marker and correlate of the in vivo host immune response toward the scaffold. Decellularized scaffolds were free of major histocompatibility complex class I and II antigens and were found to exert anti-inflammatory and immunosuppressive effects, as evidenced by delayed biodegradation time in vivo; reduced sensitized T-cell proliferative activity in vitro; reduced IL-2, IFN-γ, and raised IL-10 levels in cell-culture supernatants; polarization of the macrophage response in vivo toward an M2 phenotype; and improved survival of donor-derived xenogeneic cells at 2 and 4 wk in vivo. Decellularized scaffolds polarize host responses away from a classical TH1-proinflammatory profile and appear to down-regulate T-cell xeno responses and TH1 effector function by inducing a state of peripheral T-cell hyporesponsiveness. These results have substantial implications for the future clinical application of tissue-engineered therapies.

Collaboration


Dive into the Mark Turmaine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rhona Mirsky

University College London

View shared research outputs
Top Co-Authors

Avatar

Gillian P. Bates

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Loesch

University College London

View shared research outputs
Top Co-Authors

Avatar

Paolo De Coppi

University College London

View shared research outputs
Top Co-Authors

Avatar

D Wilton

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge