Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark W. Paschke is active.

Publication


Featured researches published by Mark W. Paschke.


Ecosystems | 2000

Nitrogen availability and old-field succession in a shortgrass steppe.

Mark W. Paschke; Terry McLendon; Edward F. Redente

ABSTRACT The relationship between soil nitrogen (N) availability and plant community structure was investigated in old-fields in the shortgrass steppe of Colorado. Nitrogen availability was manipulated by N or sucrose additions for 4 years at three old-fields (early-seral, mid-seral, and late-seral) and at an uncultivated control site. The addition of N generally resulted in increased abundance of annual forbs and grasses relative to perennials at all of the previously cultivated sites. Conversely, experimental reduction of N availability generally increased the relative abundance of perennials. Despite a lack of detectable differences in N mineralization between sites and treatments, ion-exchange resin bags confirmed that sucrose additions reduced plant-available N and that N additions increased plant-available N. This was evidenced further by similar observations for plant tissue N content. The degree to which N additions increased N availability at the various sites supported the idea that late-seral plant communities are less effective at N capture relative to earlier-seral communities. The mid-seral old-field had the lowest rates of litter decomposition and a relatively large accumulation of litter on the soil surface. This mid-seral old-field was dominated by an exotic annual grass (Bromus tectorum), which appears to be a major hindrance to redevelopment of the plant-soil system. By experimentally reducing N availability at this stage, we were able, in 4 years, to change the plant community into one that more closely resembled the late-seral community. We also observed that the natural recruitment of weedy annual species on the uncultivated site during an unusually wet year was suppressed by reducing N availability. Our results suggest that available N is an important factor controlling the rate and course of plant and soil community redevelopment on abandoned croplands in the shortgrass steppe, and that manipulation of N availability might be useful in restoration of rangeland vegetation.


Plant and Soil | 2010

Metallophytes—a view from the rhizosphere

Élan R. Alford; Elizabeth A. H. Pilon-Smits; Mark W. Paschke

Some plants hyperaccumulate metals or metalloids to levels several orders of magnitude higher than other species. This intriguing phenomenon has received considerable attention in the past decade. While research has mostly focused on the above-ground organs, roots are the sole access point to below-ground trace elements and as such they play a vital role in hyperaccumulation. Here we highlight the role of the root as an effective trace element scavenger through interactions in the rhizosphere. We found that less than 10% of the known hyperaccumulator species have had their rhizospheres examined. When studied, researchers have focused on root physical characteristics, rhizosphere chemistry, and rhizosphere microbiology as central themes to understand plant hyperaccumulation. One physical characteristic often assumed about hyperaccumulators is that their roots are small, but this is not true for all species and many species remain unexamined. Transporters in root membranes provide avenues for root uptake, while root growth and morphology influence plant access to trace elements in the rhizosphere. Some hyperaccumulators exhibit unique root scavenging and direct their growth toward elements in soil. Studies on hyperaccumulator rhizosphere chemistry have examined the role of the root in altering elemental solubility through exudation and pH changes. Different interpretations have been reported for mobilization of non-labile trace element pools by hyperaccumulators. However, there is a lack of evidence for a novel role for rhizosphere acidification in hyperaccumulation. As for microbiological studies, researchers have shown that bacteria and fungi in the hyperaccumulator rhizosphere may exhibit increased metal tolerance, act as plant growth promoting microorganisms, alter elemental solubility, and have significant effects on plant trace element concentrations. New evidence suggests that symbiosis with arbuscular mycorrhizae may not be rare in hyperaccumulator taxa, even in some members of the Brassicaceae. Although there are several reports on the presence of mycorrhizae, a cohesive interpretation of their role in hyperaccumulation remains elusive. In summary, we present the current state of knowledge about how roots hyperaccumulate and we suggest ways in which this knowledge can be applied and improved.


Oecologia | 2010

Immobilizing nitrogen to control plant invasion

Laura G. Perry; Dana M. Blumenthal; Thomas A. Monaco; Mark W. Paschke; Edward F. Redente

Increased soil N availability may often facilitate plant invasions. Therefore, lowering N availability might reduce these invasions and favor desired species. Here, we review the potential efficacy of several commonly proposed management approaches for lowering N availability to control invasion, including soil C addition, burning, grazing, topsoil removal, and biomass removal, as well as a less frequently proposed management approach for lowering N availability, establishment of plant species adapted to low N availability. We conclude that many of these approaches may be promising for lowering N availability by stimulating N immobilization, even though most are generally ineffective for removing N from ecosystems (excepting topsoil removal). C addition and topsoil removal are the most reliable approaches for lowering N availability, and often favor desired species over invasive species, but are too expensive or destructive, respectively, for most management applications. Less intensive approaches, such as establishing low-N plant species, burning, grazing and biomass removal, are less expensive than C addition and may lower N availability if they favor plant species that are adapted to low N availability, produce high C:N tissue, and thus stimulate N immobilization. Regardless of the method used, lowering N availability sufficiently to reduce invasion will be difficult, particularly in sites with high atmospheric N deposition or agricultural runoff. Therefore, where feasible, the disturbances that result in high N availability should be limited in order to reduce invasions by nitrophilic weeds.


Microbial Ecology | 2004

Filamentous fungi: the indeterminate lifestyle and microbial ecology.

Donald A. Klein; Mark W. Paschke

The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be considered in the context of the indeterminate filamentous fungal lifestyle, involving the dynamics of resource allocation to hyphal structural development and synthesis of cytoplasm. Use of this approach should make it possible to gain a greater appreciation of the indeterminate filamentous fungal lifestyle, particularly in the context of microbial ecology.


Biology and Fertility of Soils | 1995

Saprophytic fungal-bacterial biomass variations in successional communities of a semi-arid steppe ecosystem

Donald A. Klein; Terry McLendon; Mark W. Paschke; Edward F. Redente

A major goal in attempting to understand plant succession is to assess the implications of fungal and bacterial biomass changes over time as plant-soil systems develop. In this study, the soil fungal and bacterial biomass of three successional semi-arid steppe communities, sampled 4, 12, and 38 years after cultivation ended, were compared with an uncultivated native plant community using microscopic procedures. In the course of the succession, significant increases in fungal hyphal lengths occurred, reaching a maximum in the oldest successional (38-year) community. Active (cytoplasm filled) hyphae decreased along the chronosequence, with the native plant community having the lowest values. Similar decreases in active bacterial biomass values occurred. In contranst, microscopically determined total bacterial numbers did not differ in soils associated with the 4-year-old and native plant communities. The ratio of active bacterial to fungal biomass, which increased over the chronosequence tested in this study, appears to provide a valuable integrative measure of plant-soil resource system development and ecosystem maturity.


Microbial Ecology | 2009

Variation in Frankia Populations of the Elaeagnus Host Infection Group in Nodules of Six Host Plant Species after Inoculation with Soil

Babur S. Mirza; Allana Welsh; Ghulam Rasul; Julie P. Rieder; Mark W. Paschke; Dittmar Hahn

The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.


Systematic and Applied Microbiology | 2009

Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents.

Allana Welsh; Babur S. Mirza; Julie P. Rieder; Mark W. Paschke; Dittmar Hahn

Bioassays with Morella pensylvanica as capture plant and comparative sequence analyses of nifH gene fragments of Frankia populations in nodules formed were used to investigate the diversity of Frankia in soils over a broad geographic range, i.e., from sites in five continents (Africa, Europe, Asia, North America, and South America). Phylogenetic analyses of 522-bp nifH gene fragments of 100 uncultured frankiae from root nodules of M. pensylvanica and of 58 Frankia strains resulted in a clear differentiation between frankiae of the Elaeagnus and the Alnus host infection groups, with sequences from each group found in all soils and the assignment of all sequences to four and five clusters within these groups, respectively. All clusters were formed or dominated by frankiae obtained from one or two soils with single sequences occasionally present from frankiae of other soils. Variation within a cluster was generally low for sequences representing frankiae in nodules induced by the same soil, but large between sequences of frankiae originating from different soils. Three clusters, one within the Elaeagnus and two within the Alnus host infection groups, were represented entirely by uncultured frankiae with no sequences from cultured relatives available. These results demonstrate large differences in nodule-forming frankiae in five soils from a broad geographic range, but low diversity of nodule-forming Frankia populations within any of these soils.


Applied Soil Ecology | 2000

A soil microbial community structural-functional index: the microscopy-based total/active/active fungal/bacterial (TA/AFB) biovolumes ratio.

Donald A. Klein; Mark W. Paschke

In most studies of fungal‐bacterial communities in soils, single-value indices such as fumigation‐extraction (FE) of microbe-derived organic carbon, measures of specific microbial cell chemical constituents, or activity-related measures have been used. These widely used single value indices, however, do not provide information on the physical structure of the filamentous fungal and bacterial community in a soil. The filamentous fungi, considered as indeterminate organisms, have a variable and changing hyphal network, most of which is devoid of cytoplasm. To meet this need for a direct integrated measure of the physical characteristics of the indeterminate fungi and their associated bacteria, a microscopy-based microbial biovolumes ratios approach is suggested. To provide this information, the total and active biovolumes of both the filamentous fungi and bacteria are assessed by microscopy. To normalize these responses, the ratio of total to active (TA) fungal plus bacterial biovolumes is divided by the ratio of the active fungal to bacterial biovolume (AFB), to yield the total/active/active fungal/bacterial (TA/AFB) biovolumes ratio. This approach has been used to analyze data from recently-cultivated early successional (ES) and uncultivated late successional (LS) sites at a shortgrass steppe of northeastern Colorado, where control plots were compared with those receiving mineral nitrogen amendments, using samples taken during the summer of 1995. The TA/AFB ratio index showed distinct and significant decreases in response to soil disturbance which reflected the decreased hyphal lengths present in these disturbed soils. These changes were not detected by the use of FE-based extractable carbon measurements. The TA/AFB ratio also showed significant positive correlations with indices of plant community development and mineral nitrogen, especially in the plots not amended with N. This TA/AFB ratios index should be able to provide information on the physical structure of the indeterminate filamentous fungi and associated soil bacteria for use in the assessment of soil quality, health and resiliency.


Plant Ecology | 2009

Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment

Laura G. Perry; Spencer A. Cronin; Mark W. Paschke

In a greenhouse experiment, we examined the effectiveness of four native cover crops for controlling four exotic, invasive species and increasing success of four western North American grassland species. Planting the annual cover crops, annual ragweed (Ambrosia artemisiifolia) and common sunflower (Helianthus annuus), reduced the biomass of the exotic species cheatgrass (Bromus tectorum), Japanese brome (Bromus japonicus), Canada thistle (Cirsium arvense), and whitetop (Cardaria draba). The annual cover crops also reduced the desired species biomass in competition with the perennial exotics, but either increased or did not affect the desired species biomass in competition with the annual exotics. Planting the perennial cover crops, Canada goldenrod (Solidago canadensis) and littleleaf pussytoes (Antennaria microphylla), rarely inhibited exotic species, but did increase the desired species biomass. Field experiments are needed to test the cover crops under more ecologically relevant conditions, but our results suggested that the annual cover crops may be effective for controlling invasive annuals and for facilitating native perennials.


Plant and Soil | 1994

Nodulation patterns of actinorhizal plants in the family Rosaceae

Steven J. Kohls; Jyothi Thimmapuram; Cindy A. Buschena; Mark W. Paschke; Jeffrey O. Dawson

Patterns of nodulation, growth, andFrankia — host specificity have not been well characterized for the actinorhizal genera in the family Rosaceae because of the scarcity ofFrankia isolates from these taxa. Furthermore, the few isolates available from actinorhizal Rosaceae have consistently failed to nodulate plants from the host genus. In a series of experiments, species of rosaceousDryas, Cowania, Cercocarpus, Fallugia, andPurshia were inoculated withFrankia isolates, crushedDryas actinorhizae, and neoglacial soils to ascertain whether any of these inocula would effectively induce nodulation. Neoglacial soils from Alaska and Canada nodulated not only the localDryas drummondii, but alsoCercocarpus betuloides, Cowania mexicana andPurshia tridentata from distant and ecologically diverse locales as well as nonrosaceous, actinorhizal species ofAlnus, Elaeagnus, Myrica, andShepherdia. But of eightFrankia isolates, including two fromPurshia tridentata and one fromCowania mexicana, none were able to induce nodulation onPurshia orCowania species. Globular, actinorhizae-like nodules incapable of acetylene reduction were produced onC. betuloides inoculated withFrankia isolates. Crushed nodule suspensions fromDryas drummondii nodulated rosaceousCowania, Dryas andPurshia, as well as non-rosaceousElaeagnus, Myrica, andShepherdia species. Nodules produced by inoculation ofCowania mexicana andPurshia tridentata with crushed, dried nodule suspensions fromDryas drummondii reduced acetylene to ethylene, indicating nitrogenase activity for these nodulated plants. These data suggest that a similar microsymbiont infects the actinorhizal genera in the family Rosaceae.

Collaboration


Dive into the Mark W. Paschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura G. Perry

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald A. Klein

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Élan R. Alford

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Jayne L. Jonas

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Julie P. Rieder

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiffany L. Weir

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge