Mark W. Sleeman
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark W. Sleeman.
Journal of Clinical Investigation | 2006
Alfonso Abizaid; Zhong-Wu Liu; Zane B. Andrews; Marya Shanabrough; Erzsebet Borok; John D. Elsworth; Robert H. Roth; Mark W. Sleeman; Marina R. Picciotto; Matthias H. Tschöp; Xiao-Bing Gao; Tamas L. Horvath
The gut hormone ghrelin targets the brain to promote food intake and adiposity. The ghrelin receptor growth hormone secretagogue 1 receptor (GHSR) is present in hypothalamic centers controlling energy metabolism as well as in the ventral tegmental area (VTA), a region important for motivational aspects of multiple behaviors, including feeding. Here we show that in mice and rats, ghrelin bound to neurons of the VTA, where it triggered increased dopamine neuronal activity, synapse formation, and dopamine turnover in the nucleus accumbens in a GHSR-dependent manner. Direct VTA administration of ghrelin also triggered feeding, while intra-VTA delivery of a selective GHSR antagonist blocked the orexigenic effect of circulating ghrelin and blunted rebound feeding following fasting. In addition, ghrelin- and GHSR-deficient mice showed attenuated feeding responses to restricted feeding schedules. Taken together, these data suggest that the mesolimbic reward circuitry is targeted by peripheral ghrelin to influence physiological mechanisms related to feeding.
Nature Neuroscience | 2006
Sabrina Diano; Susan A. Farr; Stephen C. Benoit; Ewan C. McNay; Ivaldo Silva; Balazs Horvath; F.Spencer Gaskin; Naoko Nonaka; Laura B. Jaeger; William A. Banks; John E. Morley; Shirly Pinto; Robert S. Sherwin; Lin Xu; Kelvin A Yamada; Mark W. Sleeman; Matthias H. Tschöp; Tamas L. Horvath
The gut hormone and neuropeptide ghrelin affects energy balance and growth hormone release through hypothalamic action that involves synaptic plasticity in the melanocortin system. Ghrelin binding is also present in other brain areas, including the telencephalon, where its function remains elusive. Here we report that circulating ghrelin enters the hippocampus and binds to neurons of the hippocampal formation, where it promotes dendritic spine synapse formation and generation of long-term potentiation. These ghrelin-induced synaptic changes are paralleled by enhanced spatial learning and memory. Targeted disruption of the gene that encodes ghrelin resulted in decreased numbers of spine synapses in the CA1 region and impaired performance of mice in behavioral memory testing, both of which were rapidly reversed by ghrelin administration. Our observations reveal an endogenous function of ghrelin that links metabolic control with higher brain functions and suggest novel therapeutic strategies to enhance learning and memory processes.
Cell Metabolism | 2008
Miguel López; Ricardo Lage; Asish K. Saha; Diego Perez-Tilve; María J. Vázquez; Luis M. Varela; Susana Sangiao-Alvarellos; Sulay Tovar; Kawtar Raghay; Sergio Rodriguez-Cuenca; Rosangela Deoliveira; Tamara R. Castañeda; Rakesh Datta; Jesse Z. Dong; Michael D. Culler; Mark W. Sleeman; Clara V. Alvarez; Rosalía Gallego; Christopher J. Lelliott; David Carling; Matthias H. Tschöp; Carlos Dieguez; Antonio Vidal-Puig
Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelins effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.
Nature Genetics | 2005
Natasha L. Harvey; R. Sathish Srinivasan; Miriam E. Dillard; Nicole C. Johnson; Marlys H. Witte; Kelli Boyd; Mark W. Sleeman; Guillermo Oliver
Multiple organs cooperate to regulate appetite, metabolism, and glucose and fatty acid homeostasis. Here, we identified and characterized lymphatic vasculature dysfunction as a cause of adult-onset obesity. We found that functional inactivation of a single allele of the homeobox gene Prox1 led to adult-onset obesity due to abnormal lymph leakage from mispatterned and ruptured lymphatic vessels. Prox1 heterozygous mice are a new model for adult-onset obesity and lymphatic vascular disease.
Journal of Clinical Investigation | 2005
Katherine E. Wortley; Juan-Pablo del Rincon; Jane D. Murray; Karen Garcia; Keiji Iida; Michael O. Thorner; Mark W. Sleeman
The gut peptide ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been implicated not only in the regulation of pituitary growth hormone (GH) secretion but in a number of endocrine and nonendocrine functions, including appetitive behavior and carbohydrate substrate utilization. Nevertheless, recent genetic studies have failed to show any significant defects in GH levels, food intake, or body weight in adult ghrelin-deficient (Ghrl-/-) mice. Here we demonstrate that male Ghrl-/- mice are protected from the rapid weight gain induced by early exposure to a high-fat diet 3 weeks after weaning (6 weeks of age). This reduced weight gain was associated with decreased adiposity and increased energy expenditure and locomotor activity as the animals aged. Despite the absence of ghrelin, these Ghrl-/- mice showed a paradoxical preservation of the GH/IGF-1 axis, similar to that reported in lean compared with obese humans. These findings suggest an important role for endogenous ghrelin in the metabolic adaptation to nutrient availability.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Philip D. Lambert; Keith D. Anderson; Mark W. Sleeman; Vivian Wong; Jiangning Tan; A Hijarunguru; Tom Corcoran; Jane D. Murray; Karen Thabet; George D. Yancopoulos; Stanley J. Wiegand
Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Tong-Jin Zhao; Guosheng Liang; Robert Lin Li; Xuefen Xie; Mark W. Sleeman; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Joseph L. Goldstein; Michael S. Brown
Ghrelin O-acyltransferase (GOAT) attaches octanoate to proghrelin, which is processed to ghrelin, an octanoylated peptide hormone that stimulates release of growth hormone (GH) from pituitary cells. Elimination of the gene encoding ghrelin or its receptor produces only mild phenotypes in mice. Thus, the essential function of ghrelin is obscure. Here, we eliminate the Goat gene in mice, thereby eliminating all octanoylated ghrelin from blood. On normal or high fat diets, Goat−/− mice grew and maintained the same weights as wild-type (WT) littermates. When subjected to 60% calorie restriction, WT and Goat−/− mice both lost 30% of body weight and 75% of body fat within 4 days. In both lines, fasting blood glucose initially declined equally. After 4 days, glucose stabilized in WT mice at 58–76 mg/dL. In Goat−/− mice, glucose continued to decline, reaching 12–36 mg/dL on day 7. At this point, WT mice showed normal physical activity, whereas Goat−/− mice were moribund. GH rose progressively in calorie-restricted WT mice and less in Goat−/− mice. Infusion of either ghrelin or GH normalized blood glucose in Goat−/− mice and prevented death. Thus, an essential function of ghrelin in mice is elevation of GH levels during severe calorie restriction, thereby preserving blood glucose and preventing death.
Nature Medicine | 2005
Mark W. Sleeman; Katherine E. Wortley; Ka-Man V. Lai; Lori Gowen; Jennifer Kintner; William O. Kline; Karen Garcia; Trevor N. Stitt; George D. Yancopoulos; Stanley J. Wiegand; David J. Glass
Genetic ablation of Inppl1, which encodes SHIP2 (SH2-domain containing inositol 5-phosphatase 2), was previously reported to induce severe insulin sensitivity, leading to early postnatal death. In the previous study, the targeting construct left the first eighteen exons encoding Inppl1 intact, generating a Inppl1EX19-28−/− mouse, and apparently also deleted a second gene, Phox2a. We report a new SHIP2 knockout (Inppl1−/−) targeted to the translation-initiating ATG, which is null for Inppl1 mRNA and protein. Inppl1−/− mice are viable, have normal glucose and insulin levels, and normal insulin and glucose tolerances. The Inppl1−/− mice are, however, highly resistant to weight gain when placed on a high-fat diet. These results suggest that inhibition of SHIP2 would be useful in the effort to ameliorate diet-induced obesity, but call into question a dominant role of SHIP2 in modulating glucose homeostasis.
Pharmaceutica Acta Helvetiae | 2000
Mark W. Sleeman; Keith D. Anderson; Philip D. Lambert; George D. Yancopoulos; Stanley J. Wiegand
Ciliary neurotrophic factor (CNTF) is expressed in glial cells within the central and peripheral nervous systems. CNTF stimulates gene expression, cell survival or differentiation in a variety of neuronal cell types such as sensory, sympathetic, ciliary and motor neurons. In addition, effects of CNTF on oligodendrocytes as well as denervated and intact skeletal muscle have been documented. CNTF itself lacks a classical signal peptide sequence of a secreted protein, but is thought to convey its cytoprotective effects after release from adult glial cells by some mechanism induced by injury. Interestingly, mice that are homozygous for an inactivated CNTF gene develop normally and initially thrive. Only later in adulthood do they exhibit a mild loss of motor neurons with resulting muscle weakness, leading to the suggestion that CNTF is not essential for neural development, but instead acts in response to injury or other stresses. The CNTF receptor complex is most closely related to, and shares subunits with the receptor complexes for interleukin-6 and leukemia inhibitory factor. The specificity conferring alpha subunit of the CNTF complex (CNTFR alpha), is extremely well conserved across species, and has a distribution localized predominantly to the nervous system and skeletal muscle. CNTFR alpha lacks a conventional transmembrane domain and is thought to be anchored to the cell membrane by a glycosyl-phosphatidylinositol linkage. Mice lacking CNTFR alpha die perinatally, perhaps indicating the existence of a second developmentally important CNTF-like ligand. Signal transduction by CNTF requires that it bind first to CNTFR alpha, permitting the recruitment of gp130 and LIFR beta, forming a tripartite receptor complex. CNTF-induced heterodimerization of the beta receptor subunits leads to tyrosine phosphorylation (through constitutively associated JAKs), and the activated receptor provides docking sites for SH2-containing signaling molecules, such as STAT proteins. Activated STATs dimerize and translocate to the nucleus to bind specific DNA sequences, resulting in enhanced transcription of responsive genes. The neuroprotective effects of CNTF have been demonstrated in a number of in vitro cell models as well as in vivo in mutant mouse strains which exhibit motor neuron degeneration. Intracerebral administration of CNTF and CNTF analogs has also been shown to protect striatal output neurons in rodent and primate models of Huntingtons disease. Treatment of humans and animals with CNTF is also known to induce weight loss characterized by a preferential loss of body fat. When administered systemically, CNTF activates downstream signaling molecules such as STAT-3 in areas of the hypothalamus which regulate food intake. In addition to its neuronal actions, CNTF and analogs have been shown to act on non-neuronal cells such as glia, hepatocytes, skeletal muscle, embryonic stem cells and bone marrow stromal cells.
Neuroscience | 2009
I.D. Blum; Zack Patterson; Rim Khazall; Elaine Waddington Lamont; Mark W. Sleeman; Tamas L. Horvath; Alfonso Abizaid
Ghrelin, an orexigenic hormone produced by the stomach, is secreted in anticipation of scheduled meals and in correlation with anticipatory locomotor activity. We hypothesized that ghrelin is directly implicated in stimulating locomotor activity in anticipation of scheduled meals. To test this hypothesis, we observed 24 h patterns of locomotor activity in mice with targeted mutations of the ghrelin receptor gene (GHSR KO) and wild-type littermates, all given access to food for 4 h daily for 14 days. While wild type (WT) and GHSR KO mice produced increases in anticipatory locomotor activity, anticipatory locomotor activity in GHSR KO mice was attenuated (P<0.05). These behavioral measures correlated with attenuated levels of Fos immunoreactivity in a number of hypothalamic nuclei from GHSR KO placed on the same restricted feeding schedule for 7 days and sacrificed at ZT4. Interestingly, seven daily i.p. ghrelin injections mimicked hypothalamic Fos expression patterns to those seen in mice under restricted feeding schedules. These data suggest that ghrelin acts in the hypothalamus to augment locomotor activity in anticipation of scheduled meals.