Mark Wogulis
Novozymes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Wogulis.
Nature Biotechnology | 2011
Randy M. Berka; Igor V. Grigoriev; Robert Otillar; Asaf Salamov; Jane Grimwood; Ian Reid; Nadeeza Ishmael; Tricia John; Corinne Darmond; Marie Claude Moisan; Bernard Henrissat; Pedro M. Coutinho; Vincent Lombard; Donald O. Natvig; Erika Lindquist; Jeremy Schmutz; Susan Lucas; Paul Harris; Justin Powlowski; Annie Bellemare; David Taylor; Gregory Butler; Ronald P. de Vries; Iris E. Allijn; Joost van den Brink; Sophia Ushinsky; Reginald Storms; Amy Jo Powell; Ian T. Paulsen; Liam D. H. Elbourne
Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.
Plant Physiology | 2012
Réjane Pratelli; Damian D. Guerra; Shi Yu; Mark Wogulis; Edward Kraft; Wolf B. Frommer; Judy Callis; Guillaume Pilot
Amino acids serve as transport forms for organic nitrogen in the plant, and multiple transport steps are involved in cellular import and export. While the nature of the export mechanism is unknown, overexpression of GLUTAMINE DUMPER1 (GDU1) in Arabidopsis (Arabidopsis thaliana) led to increased amino acid export. To gain insight into GDU1’s role, we searched for ethyl-methanesulfonate suppressor mutants and performed yeast-two-hybrid screens. Both methods uncovered the same gene, LOSS OF GDU2 (LOG2), which encodes a RING-type E3 ubiquitin ligase. The interaction between LOG2 and GDU1 was confirmed by glutathione S-transferase pull-down, in vitro ubiquitination, and in planta coimmunoprecipitation experiments. Confocal microscopy and subcellular fractionation indicated that LOG2 and GDU1 both localized to membranes and were enriched at the plasma membrane. LOG2 expression overlapped with GDU1 in the xylem and phloem tissues of Arabidopsis. The GDU1 protein encoded by the previously characterized intragenic suppressor mutant log1-1, with an arginine in place of a conserved glycine, failed to interact in the multiple assays, suggesting that the Gdu1D phenotype requires the interaction of GDU1 with LOG2. This hypothesis was supported by suppression of the Gdu1D phenotype after reduction of LOG2 expression using either artificial microRNAs or a LOG2 T-DNA insertion. Altogether, in accordance with the emerging bulk of data showing membrane protein regulation via ubiquitination, these data suggest that the interaction of GDU1 and the ubiquitin ligase LOG2 plays a significant role in the regulation of amino acid export from plant cells.
Archive | 2011
Mark Wogulis; Paul Harris; David Osborn
Archive | 2009
Paul Harris; Mark Wogulis
Archive | 2010
Mark Wogulis
Archive | 2011
Matthew Sweeney; Mark Wogulis
Archive | 2012
Janine Lin; Doreen Bohan; Michelle Maranta; Leslie Beresford; Michael Lamsa; Matt Sweeney; Mark Wogulis; Elizabeth Znameroski; Frank Winther Rasmussen
Archive | 2017
David Osborn; Mark Wogulis; Tia Heu
Archive | 2012
Mark Wogulis; David Osborn; Tia Heu
Archive | 2012
Damian D. Guerra; Mark Wogulis; Edward Kraft; B. Frommer; Judy Callis