Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Zeller is active.

Publication


Featured researches published by Mark Zeller.


Journal of Virology | 2009

Are Human P[14] Rotavirus Strains the Result of Interspecies Transmissions from Sheep or Other Ungulates That Belong to the Mammalian Order Artiodactyla?

Jelle Matthijnssens; Christiaan A. Potgieter; Max Ciarlet; Viviana Parreño; Vito Martella; Krisztián Bányai; Lorena Garaicoechea; Enzo A. Palombo; Luis Novo; Mark Zeller; Serenella Arista; Giuseppe Gerna; Mustafizur Rahman; Marc Van Ranst

ABSTRACT A limited number of human G6P[14] rotavirus strains that cause gastroenteritis in humans have been isolated in Europe and Australia. The complete genome sequences were determined for five of these human strains—B10925-97 (isolated in Belgium in 1997), 111/05-27 (Italy, 2005), PA169 (Italy, 1987), MG6 (Australia, 1993), and Hun5 (Hungary, 1997)—and their genetic relatedness to animal rotavirus strains was evaluated by sequencing the complete genome of the sheep rotavirus OVR762 (G8P[14]; Spain, 2002), the guanaco (Lama guanicoe) rotavirus strains Arg/Chubut/99 and Arg/Río Negro/98 (G8P[14] and G8P[1], respectively; Argentina, 1999 and 1998), the sable antelope strain RC-18/08 (G6P[14]; South Africa, 2008), and the bovine rotavirus strain Arg/B383/98 (G15P[11]; Argentina, 1998). These analyses revealed an overall consensus genomic constellation (G6/G8)-P[14]-I2-(R2/R5)-C2-M2-(A3/A11)-N2-T6-(E2/E12)-H3, together with a few gene reassortments, and the phylogenetic analyses confirmed that the P[14] human strains evaluated in this study were closely related to rotavirus strains isolated from sheep, cattle, goats, guanacos, and antelopes and to rabbits (albeit to a lesser extent), suggesting that one (or more) of these animal species might be the source of the human G6P[14] strains. The main feature of the genotype and phylogenetic analyses was the close overall genomic relatedness between the five human G6P[14] rotavirus strains and the ovine and antelope rotavirus strains. Taken together, these data strongly suggest a common origin for the human P[14] strains and those of the even-toed ungulates belonging to the mammalian order Artiodactyla, with sheep probably playing a key role in the interspecies transmission responsible for the introduction of P[14] rotavirus strains into the human population.


BMJ | 2012

Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study

Tessa Braeckman; Koen Van Herck; Nadia Meyer; Jean-Yves Pirçon; Montse Soriano-Gabarró; Elisabeth Heylen; Mark Zeller; Myriam Azou; Heidi Capiau; Jan De Koster; Anne-Sophie Maernoudt; Marc Raes; Lutgard Verdonck; Marc Verghote; Anne Vergison; Jelle Matthijnssens; Marc Van Ranst; Pierre Van Damme

Objective To evaluate the effectiveness of rotavirus vaccination among young children in Belgium. Design Prospective case-control study. Setting Random sample of 39 Belgian hospitals, February 2008 to June 2010. Participants 215 children admitted to hospital with rotavirus gastroenteritis confirmed by polymerase chain reaction and 276 age and hospital matched controls. All children were of an eligible age to have received rotavirus vaccination (that is, born after 1 October 2006 and aged ≥14 weeks). Main outcome measure Vaccination status of children admitted to hospital with rotavirus gastroenteritis and matched controls. Results 99 children (48%) admitted with rotavirus gastroenteritis and 244 (91%) controls had received at least one dose of any rotavirus vaccine (P<0.001). The monovalent rotavirus vaccine accounted for 92% (n=594) of all rotavirus vaccine doses. With hospital admission as the outcome, the unadjusted effectiveness of two doses of the monovalent rotavirus vaccine was 90% (95% confidence interval 81% to 95%) overall, 91% (75% to 97%) in children aged 3-11 months, and 90% (76% to 96%) in those aged ≥12 months. The G2P[4] genotype accounted for 52% of cases confirmed by polymerase chain reaction with eligible matched controls. Vaccine effectiveness was 85% (64% to 94%) against G2P[4] and 95% (78% to 99%) against G1P[8]. In 25% of cases confirmed by polymerase chain reaction with eligible matched controls, there was reported co-infection with adenovirus, astrovirus and/or norovirus. Vaccine effectiveness against co-infected cases was 86% (52% to 96%). Effectiveness of at least one dose of any rotavirus vaccine (intention to vaccinate analysis) was 91% (82% to 95%). Conclusions Rotavirus vaccination is effective for the prevention of admission to hospital for rotavirus gastroenteritis among young children in Belgium, despite the high prevalence of G2P[4] and viral co-infection.


Clinical Microbiology and Infection | 2014

Higher proportion of G2P[4] rotaviruses in vaccinated hospitalized cases compared with unvaccinated hospitalized cases, despite high vaccine effectiveness against heterotypic G2P[4] rotaviruses

Jelle Matthijnssens; Mark Zeller; Elisabeth Heylen; S. De Coster; Jordy Vercauteren; Tessa Braeckman; K. van Herck; Nadia Meyer; J-Y Pirçon; Montse Soriano-Gabarró; M. Azou; H. Capiau; J. De Koster; As Maernoudt; Marc Raes; L. Verdonck; Marc Verghote; Anne Vergison; P. Van Damme; M. Van Ranst

The overall vaccine effectiveness of the monovalent rotavirus vaccine in an observational, prospective, multicentre, hospital-based case-control study in Belgium (RotaBel) was 90%. However, rotavirus genotype and co-infecting pathogens are important parameters to take into account when assessing vaccine effectiveness. In this study we specifically investigated the effect of rotavirus genotypes and co-infecting pathogens on vaccine effectiveness of the monovalent vaccine. In addition, we also investigated the effect of co-infecting pathogens on disease severity. From February 2008 to June 2010 stool samples of rotavirus gastroenteritis cases of a random sample of 39 Belgian hospitals were collected and subsequently genotyped. Fishers exact tests were performed to investigate the relationships between rotavirus genotype, co-infecting pathogens and disease severity. The vaccine effectiveness of a full series of the monovalent rotavirus vaccine against hospitalized rotavirus gastroenteritis caused by G1P[8] rotavirus strains was 95% (95% CI 77.5-98.7). Against G2P[4], the vaccine effectiveness was 85% (95% CI: 63.7-93.8). G4P[8]- and G3P[8]-specific vaccine effectiveness was 90% (95% CI 19.2-98.7) and 87% (95% CI -5.2 to 98.4), respectively. A post-hoc analysis showed that the genotype distribution was significantly related to the vaccination status (p <0.001), whereby G2P[4] strains were proportionally more prevalent in vaccinated cases than in unvaccinated cases. No statistical associations were found between co-infection status and vaccination status, Vesikari severity score or rotavirus genotype. The high vaccine effectiveness against the individual genotypes implies robust protection of the monovalent rotavirus vaccine against hospitalized rotavirus gastroenteritis caused by the major human rotavirus genotypes. The prevalence of G2P[4] requires continued monitoring.


Genome Biology and Evolution | 2015

Genome-Wide Evolutionary Analyses of G1P[8] Strains Isolated Before and After Rotavirus Vaccine Introduction.

Mark Zeller; Celeste Donato; Nídia Sequeira Trovão; Daniel Cowley; Elisabeth Heylen; Nicole C. Donker; John K. McAllen; Asmik Akopov; Ewen F. Kirkness; Philippe Lemey; Marc Van Ranst; Jelle Matthijnssens; Carl D. Kirkwood

Rotaviruses are the most important etiological agent of acute gastroenteritis in young children worldwide. Among the first countries to introduce rotavirus vaccines into their national immunization programs were Belgium (November 2006) and Australia (July 2007). Surveillance programs in Belgium (since 1999) and Australia (since 1989) offer the opportunity to perform a detailed comparison of rotavirus strains circulating pre- and postvaccine introduction. G1P[8] rotaviruses are the most prominent genotype in humans, and a total of 157 G1P[8] rotaviruses isolated between 1999 and 2011 were selected from Belgium and Australia and their complete genomes were sequenced. Phylogenetic analysis showed evidence of frequent reassortment among Belgian and Australian G1P[8] rotaviruses. Although many different phylogenetic subclusters were present before and after vaccine introduction, some unique clusters were only identified after vaccine introduction, which could be due to natural fluctuation or the first signs of vaccine-driven evolution. The times to the most recent common ancestors for the Belgian and Australian G1P[8] rotaviruses ranged from 1846 to 1955 depending on the gene segment, with VP7 and NSP4 resulting in the most recent estimates. We found no evidence that rotavirus population size was affected after vaccine introduction and only six amino acid sites in VP2, VP3, VP7, and NSP1 were identified to be under positive selective pressure. Continued surveillance of G1P[8] strains is needed to determine long-term effects of vaccine introductions, particularly now rotavirus vaccines are implemented in the national immunization programs of an increasing number of countries worldwide.


Archives of Virology | 2016

Reassortment among picobirnaviruses found in wolves

Nádia Conceição-Neto; J. Mesquita; Mark Zeller; Claude Kwe Yinda; Francisco Álvares; Sara Roque; Francisco Petrucci-Fonseca; Raquel Godinho; Elisabeth Heylen; Marc Van Ranst; Jelle Matthijnssens

We conducted a viral metagenomics study in diarrheic free-ranging wolves in Portugal, revealing for the first time the presence of reassortant picobirnaviruses. These viruses shared identical capsid segments together with diverse RNA-dependent RNA polymerase segments. Even though causality between these picobirnaviruses and diarrhea could not be established, the study nonetheless confirms for the first time that wolves are a potential reservoir for picobirnaviruses, which might play a role as enteric pathogens.


PeerJ | 2017

Comparative analysis of the Rotarix™ vaccine strain and G1P[8] rotaviruses detected before and after vaccine introduction in Belgium

Mark Zeller; Elisabeth Heylen; Sana Tamim; John K. McAllen; Ewen F. Kirkness; Asmik Akopov; Sarah De Coster; Marc Van Ranst; Jelle Matthijnssens

G1P[8] rotaviruses are responsible for the majority of human rotavirus infections worldwide. The effect of universal mass vaccination with rotavirus vaccines on circulating G1P[8] rotaviruses is still poorly understood. Therefore we analyzed the complete genomes of the Rotarix™ vaccine strain, and 70 G1P[8] rotaviruses, detected between 1999 and 2010 in Belgium (36 before and 34 after vaccine introduction) to investigate the impact of rotavirus vaccine introduction on circulating G1P[8] strains. All rotaviruses possessed a complete Wa-like genotype constellation, but frequent intra-genogroup reassortments were observed as well as multiple different cluster constellations circulating in a single season. In addition, identical cluster constellations were found to circulate persistently over multiple seasons. The Rotarix™ vaccine strain possessed a unique cluster constellation that was not present in currently circulating G1P[8] strains. At the nucleotide level, the VP6, VP2 and NSP2 gene segments of Rotarix™ were relatively distantly related to any Belgian G1P[8] strain, but other gene segments of Rotarix™ were found in clusters also containing circulating Belgian strains. At the amino acid level, the genetic distance between Rotarix™ and circulating Belgian strains was considerably lower, except for NSP1. When we compared the Belgian G1P[8] strains collected before and after vaccine introduction a reduction in the proportion of strains that were found in the same cluster as the Rotarix™ vaccine strain was observed for most gene segments. The reduction in the proportion of strains belonging to the same cluster may be the result of the vaccine introduction, although natural fluctuations cannot be ruled out.


bioRxiv | 2016

Evidence for reassortment of highly divergent novel rotaviruses from bats in Cameroon, without evidence for human interspecies transmissions

Claude Kwe Yinda; Mark Zeller; Nádia Conceição-Neto; Piet Maes; Ward Deboutte; Leen Beller; Elisabeth Heylen; Stephen Mbigha Ghogomu; Marc Van Ranst; Jelle Matthijnssens

Bats are an important reservoir for pathogenic human respiratory and hemorrhagic viruses but only little is known about bat viruses causing gastroenteritis in humans, including rotavirus A strains (RVA). Only three RVA strains have been reported in bats in Kenya (straw-colored fruit bat) and in China (lesser horseshoe and a stoliczka’s trident bat), being highly divergent from each other. To further elucidate the potential of bat RVAs to cause gastroenteritis in humans we started by investigating the genetic diversity of RVAs in fecal samples from 87 straw-colored fruit bats living in close contact with humans in Cameroon using metagenomics. Five samples contained significant numbers of RVA Illumina reads, sufficient to obtain their (near) complete genomes. A single RVA strain showed a close phylogenetic relationship with the Kenyan bat RVA strain in six gene segments, including VP7 (G25), whereas the other gene segments represented novel genotypes as ratified by the RCWG. The 4 other RVA strains were highly divergent from known strains (but very similar among each other) possessing all novel genotypes. Only the VP7 and VP4 genes showed a significant variability representing multiple novel G and P genotypes, indicating the frequent occurrence of reassortment events. Comparing these bat RVA strains with currently used human RVA screening primers indicated that several of the novel VP7 and VP4 segments would not be detected in routine epidemiological screening studies. Therefore, novel VP6 based screening primers matching both human and bat RVAs were developed and used to screen samples from 25 infants with gastroenteritis living in close proximity with the studied bat population. Although RVA infections were identified in 36% of the infants, Sanger sequencing did not indicate evidence of interspecies transmissions. This study identified multiple novel bat RVA strains, but further epidemiological studies in humans will have to assess if these viruses have the potential to cause gastroenteritis in humans.


Archives of Virology | 2011

Genotypes of rotavirus strains circulating in Amman, Jordan, in 2006/07 and their significance for the potential effectiveness of future rotavirus vaccination

Khitam Salem; Salwa Bdour; Mark Zeller; Marc Van Ranst; Jelle Matthijnssens


Archive | 2009

Possible immune evasion by G1 lineage I after vaccine introduction in Belgium

Mark Zeller; Jelle Matthijnssens; Mustafizur Rahman; Marc Van Ranst


Archive | 2013

Rotavirus genotype distribution in Belgium: continued high prevalence of G2, seven years after vaccine introduction

Mark Zeller; Elisabeth Heylen; Pieter Neels; Sarah De Coster; Marc Van Ranst; Jelle Matthijnssens

Collaboration


Dive into the Mark Zeller's collaboration.

Top Co-Authors

Avatar

Jelle Matthijnssens

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Heylen

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marc Van Ranst

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarah De Coster

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Van Ranst

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge