Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markella Ponticos is active.

Publication


Featured researches published by Markella Ponticos.


Arthritis & Rheumatism | 2009

Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen.

Markella Ponticos; Alan M. Holmes; Xu Shiwen; Patricia Leoni; Korsa Khan; Vineeth Rajkumar; Rachel K. Hoyles; George Bou-Gharios; Carol M. Black; Christopher P. Denton; David J. Abraham; Andrew Leask; Gisela Lindahl

OBJECTIVE Connective tissue growth factor (CTGF; CCN2) is overexpressed in systemic sclerosis (SSc) and has been hypothesized to be a key mediator of the pulmonary fibrosis frequently observed in this disease. CTGF is induced by transforming growth factor beta (TGFbeta) and is a mediator of some profibrotic effects of TGFbeta in vitro. This study was undertaken to investigate the role of CTGF in enhanced expression of type I collagen in bleomycin-induced lung fibrosis, and to delineate the mechanisms of action underlying the effects of CTGF on Col1a2 (collagen gene type I alpha2) in this mouse model and in human pulmonary fibroblasts. METHODS Transgenic mice that were carrying luciferase and beta-galactosidase reporter genes driven by the Col1a2 enhancer/promoter and the CTGF promoter, respectively, were injected with bleomycin to induce lung fibrosis (or saline as control), and the extracted pulmonary fibroblasts were incubated with CTGF blocking agents. In vitro, transient transfection, promoter/reporter constructs, and electrophoretic mobility shift assays were used to determine the mechanisms of action of CTGF in pulmonary fibroblasts. RESULTS In the mouse lung tissue, CTGF expression and promoter activity peaked 1 week after bleomycin challenge, whereas type I collagen expression and Col1a2 promoter activity peaked 2 weeks postchallenge. Fibroblasts isolated from the mouse lungs 14 days after bleomycin treatment retained a profibrotic expression pattern, characterized by greatly elevated levels of type I collagen and CTGF protein and increased promoter activity. In vitro, inhibition of CTGF by specific small interfering RNA and neutralizing antibodies reduced the collagen protein expression and Col1a2 promoter activity. Moreover, in vivo, anti-CTGF antibodies applied after bleomycin challenge significantly reduced the Col1a2 promoter activity by approximately 25%. The enhanced Col1a2 promoter activity in fibroblasts from bleomycin-treated lungs was partly dependent on Smad signaling, whereas CTGF acted on the Col1a2 promoter by a mechanism that was independent of the Smad binding site, but was, instead, dependent on the ERK-1/2 and JNK MAPK pathways. The CTGF effect was mapped to the proximal promoter region surrounding the inverted CCAAT box, possibly involving CREB and c-Jun. In human lung fibroblasts, the human COL1A2 promoter responded in a similar manner, and the mechanisms of action also involved ERK-1/2 and JNK signaling. CONCLUSION Our results clearly define a direct profibrotic effect of CTGF and demonstrate its contribution to lung fibrosis through transcriptional activation of Col1a2. Blocking strategies revealed the signaling mechanisms involved. These findings show CTGF to be a rational target for therapy in fibrotic diseases such as SSc.


The FASEB Journal | 2002

Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway

Richard Stratton; Vineeth Rajkumar; Markella Ponticos; Blake Nichols; Xu Shiwen; Carol M. Black; David J. Abraham; Andrew Leask

The SMAD‐mediated induction of connective tissue growth factor (CTGF), a fibroproliferative cytokine, by transforming growth factor (TGF)β is required for the development of sustained fibrosis in humans. Here, we show that in fibroblasts, activation of the Ras/MEK/ERK pathway is required for the SMAD‐mediated induction of CTGF by TGFβ2. We then show that activation of protein kinase A (PKA) in fibroblasts is able to block Ras/MEK/ERK signaling and abolish the fibrotic response. Previously, we found that prostacyclin agonists were able to prevent the induction of CTGF in fibroblasts, and in patients with the fibrotic disease scleroderma. Here, we confirm the in vitro and in vivo antifibrotic effects of prostacyclin derivatives and show that these effects are due to PKA‐dependent inhibition of the Ras/MEK/ERK pathway. Ras/MEK/ERK does not directly affect SMAD signaling. The coordinate and varied biological responses to TGFβ are in part due to the interactions of signaling pathways within target cells. Specific inhibition of fibroblast Ras/MEK/ERK signaling might prevent fibrosis while leaving other physiological effects of TGFβ unaltered.


Cell Proliferation | 2004

Extra-cellular matrix in vascular networks

George Bou-Gharios; Markella Ponticos; Vineeth Rajkumar; David J. Abraham

Abstract.  The vascular network is a series of linked conduits of blood vessels composed of the endothelium, a monolayer of cells that adorn the vessel lumen and surrounding layer(s) of mesenchymal cells (vascular smooth muscle, pericytes and fibroblasts). In addition to providing structural support, the mesenchymal cells are essential for vessel contractility. The extracellular matrix is a major constituent of blood vessels and provides a framework in which these various cell types are attached and embedded. The composition and organization of vascular extracellular matrix is primarily controlled by the mesenchymal cells, and is also responsible for the mechanical properties of the vessel wall, forming complex networks of structural proteins which are highly regulated. The extracellular matrix also plays a central role in cellular adhesion, differentiation and proliferation. This review examines the cellular and extracellular matrix components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.


Molecular and Cellular Biology | 2004

Regulation of Collagen Type I in Vascular Smooth Muscle Cells by Competition between Nkx2.5 and δEF1/ZEB1

Markella Ponticos; Terrence Partridge; Carol M. Black; David J. Abraham; George Bou-Gharios

ABSTRACT A major component of the vessel wall of large arteries and veins is the extracellular matrix (ECM), which consists of collagens, elastin, and proteoglycans. Collagen type I is one of the most abundant of the ECM proteins. We have previously shown that the pro-collagen type I alpha 2 gene contains an enhancer which confers tissue-specific expression in the majority of collagen-producing cells, including blood vessels. In this paper, we delineate a specific vascular smooth muscle cell (vSMC) element: a 100-bp sequence around −16.6 kb upstream of the transcription start site that regulates collagen expression exclusively in vSMCs. Furthermore, we show that the expression is activated through the binding of the homeodomain protein Nkx2.5, which is further potentiated in the presence of GATA6. In contrast, this element was repressed by the binding of the zinc-finger protein δEF1/ZEB1. We propose a model of regulation where the activating transcription factor Nkx2.5 and the repressor δEF1/ZEB1 compete for an overlapping DNA binding site. This element is important in understanding the molecular mechanisms of vessel remodeling and is a potential target for intervention in vascular diseases where there is excessive deposition of collagen in the vessel wall.


Journal of Cell Science | 2013

Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro

Sonali Sonnylal; Shiwen Xu; Helen E. Jones; A Tam; Vivek R. Sreeram; Markella Ponticos; Jill T. Norman; Pankaj B. Agrawal; David J. Abraham; Benoit de Crombrugghe

Summary Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for &agr;SMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGF&bgr;, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of &agr;-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.


Current Vascular Pharmacology | 2005

Connective Tissue Remodeling: Cross-Talk between Endothelins and Matrix Metalloproteinases

David J. Abraham; Markella Ponticos; Hideaki Nagase

Connective tissue remodeling is achieved by a complex process involving several cell types, a plethora of growth factors, cytokines, chemokines and turnover of extracellular matrix (ECM). The main enzymes that degrade ECM molecules are matrix metalloproteinases (MMPs) and their activities are regulated by endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Recent studies have indicated that endothelins and their receptor expression affects tissue remodeling and repair. Endothelins are rapidly produced by endothelial cells in response to tissue injury and they have potent vasoconstrictive properties. They also promote tissue remodeling through activation of resident connective tissue cells and controlling the production of MMPs and TIMPs by the activated cells. In this review we present the cross-talk between the endothelins and the MMP-TIMP system and their implications in controlling the normal and abnormal tissue remodeling.


Journal of Biomedical Research | 2014

Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis

Markella Ponticos; Barbara D. Smith

Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.


Embo Molecular Medicine | 2016

Endoplasmic reticulum stress enhances fibrosis through IRE1α‐mediated degradation of miR‐150 and XBP‐1 splicing

Femke Heindryckx; François Binet; Markella Ponticos; K. Rombouts; Joey Lau; Johan Kreuger; Pär Gerwins

ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress‐induced IRE1α signaling pathway, using the inhibitor 4μ8C, blocks TGFβ‐induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α−/− fibroblasts and expression of IRE1α‐mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR‐150 and thereby to release the suppressive effect that miR‐150 exerted on αSMA expression through c‐Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP‐1‐dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases.


PLOS ONE | 2015

A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis

Xu Shiwen; Richard Stratton; Joanna Nikitorowicz-Buniak; Bahja Ahmed-Abdi; Markella Ponticos; Christopher P. Denton; David J. Abraham; Ayuko Takahashi; Béla Suki; Matthew D. Layne; Robert Lafyatis; Barbara D. Smith

In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix.


Nucleic Acids Research | 2009

JunB mediates enhancer/promoter activity of COL1A2 following TGF-β induction

Markella Ponticos; Clare B. Harvey; Tetsuro Ikeda; David J. Abraham; George Bou-Gharios

Transcriptional control of the genes coding for collagen type I is regulated by a complex interaction between a distal enhancer and a proximal promoter. In this study, we have dissected the molecular mechanism of this interaction by defining a specific sequence within the enhancer that respond in fibroblasts to transforming growth factor-β (TGF-β). We show that TGF-β activates COL1A2 gene via a non-canonical (Smad-independent) signalling pathway, which requires enhancer/promoter co-operation. This interaction involves exchange of cJun/Jun B transcription factor occupancy of a critical enhancer site resulting in the stabilization of enhancer/promoter coalescence. Moreover, using transgenesis, we show that interference in this mechanism results in the abolition of COL1A2 fibroblast expression in vivo. These data are therefore relevant to the control of collagen type I in vivo both in embryonic development, in adult connective tissue homeostasis, and in tissue repair and scarring pathologies.

Collaboration


Dive into the Markella Ponticos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Shiwen

University College London

View shared research outputs
Top Co-Authors

Avatar

Carol M. Black

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan M. Holmes

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Korsa Khan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Leask

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge