Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markéta Kabátková is active.

Publication


Featured researches published by Markéta Kabátková.


Archives of Toxicology | 2013

Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication

Zdeněk Andrysík; Jiřina Procházková; Markéta Kabátková; Lenka Umannová; Pavlína Šimečková; Jiří Kohoutek; Alois Kozubík; Miroslav Machala; Jan Vondráček

The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.


Toxicological Sciences | 2011

The Interplay of the Aryl Hydrocarbon Receptor and β-Catenin Alters Both AhR-Dependent Transcription and Wnt/β-Catenin Signaling in Liver Progenitors

Jiřina Procházková; Markéta Kabátková; Vítězslav Bryja; Lenka Umannová; Ondřej Bernatík; Alois Kozubík; Miroslav Machala; Jan Vondráček

β-catenin is a key integrator of cadherin-mediated cell-cell adhesion and transcriptional regulation through the Wnt/β-catenin pathway, which plays an important role in liver biology. Using a model of contact-inhibited liver progenitor cells, we examined the interactions of Wnt/β-catenin signaling with the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, which mediates the toxicity of dioxin-like compounds, including their effects on development and hepatocarcinogenesis. We found that AhR and Wnt/β-catenin cooperated in the induction of AhR transcriptional targets, such as Cyp1a1 and Cyp1b1. However, simultaneously, the activation of AhR led to a decrease of dephosphorylated active β-catenin pool, as well as to hypophosphorylation of Dishevelled, participating in regulation of Wnt signaling. A sustained AhR activation by its model ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), led to a downregulation of a number of Wnt/β-catenin pathway target genes. TCDD also induced a switch in cytokeratin expression, where downregulation of cytokeratins 14 and 19 was accompanied with an increased cytokeratin 8 expression. Together with a downregulation of additional markers associated with stem-like phenotype, this indicated that the AhR activation interfered with differentiation of liver progenitors. The downregulation of β-catenin was also related to a reduced cell adhesion, disruption of E-cadherin-mediated cell-cell junctions and an increased G1-S transition in liver progenitor cell line. In conclusion, although β-catenin augmented the expression of selected AhR target genes, the persistent AhR activation may lead to downregulation of Wnt/β-catenin signaling, thus altering differentiation and/or proliferative status of liver progenitor cells.


Carcinogenesis | 2014

Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway

Lenka Šmerdová; Jana Svobodová; Markéta Kabátková; Jiří Kohoutek; Dalibor Blažek; Miroslav Machala; Jan Vondráček

Cytochrome P450 1B1 (CYP1B1) is an enzyme that has a unique tumor-specific pattern of expression and is capable of bioactivating a wide range of carcinogenic compounds. We have reported previously that coordinated upregulation of CYP1B1 by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and the aryl hydrocarbon receptor ligands, may increase bioactivation of promutagens, such as benzo[a]pyrene (BaP) in epithelial cells. Here, we extend those studies by describing a novel mechanism participating in the regulation of CYP1B1 expression, which involves activation of the p38 mitogen-activated protein kinase (p38) and mitogen- and stress-activated protein kinase 1 (MSK1). Using inhibitors of p38 and MSKs, as well as mouse embryonic cells derived from p38α-deficient and MSK1/2 double knockout mice, we show here that TNF-α potentiates CYP1B1 upregulation via the p38/MSK1 kinase cascade. Effects of this inflammatory cytokine on CYP1B1 expression further involve the positive transcription elongation factor b (P-TEFb). The inhibition of the P-TEFb subunit, cyclin-dependent kinase 9 (CDK9), which phosphorylates RNA polymerase II (RNAPII), prevented the enhanced CYP1B1 induction by a combination of BaP and inflammatory cytokine. Furthermore, using chromatin immunoprecipitation assays, we found that cotreatment of epithelial cells with TNF-α and BaP resulted in enhanced recruitment of both CDK9 and RNAPII to the Cyp1b1 gene promoter. Overall, these results have implications concerning the contribution of inflammatory factors to carcinogenesis, since enhanced CYP1B1 induction during inflammation may alter metabolism of exogenous carcinogens, as well as endogenous CYP1B1 substrates playing role in tumor development.


Cellular Signalling | 2012

TGF-β1 signaling plays a dominant role in the crosstalk between TGF-β1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells.

Andrea Staršíchová; Eva Hrubá; Eva Slabáková; Zuzana Pernicová; Jiřina Procházková; Kateřina Pěnčíková; Václav Šeda; Markéta Kabátková; Jan Vondráček; Alois Kozubík; Miroslav Machala; Karel Souček

Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context.


Toxicological Sciences | 2013

Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (Jup)

Jiřina Procházková; Markéta Kabátková; Lenka Šmerdová; Jiří Pacherník; Dominika Sýkorová; Jiří Kohoutek; Pavlína Šimečková; Eva Hrubá; Alois Kozubík; Miroslav Machala; Jan Vondráček

Plakoglobin is an important component of intercellular junctions, including both desmosomes and adherens junctions, which is known as a tumor suppressor. Although mutations in the plakoglobin gene (Jup) and/or changes in its protein levels have been observed in various disease states, including cancer progression or cardiovascular defects, the information about endogenous or exogenous stimuli orchestrating Jup expression is limited. Here we show that the aryl hydrocarbon receptor (AhR) may regulate Jup expression in a cell-specific manner. We observed a significant suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model toxic exogenous activator of the AhR signaling, on Jup expression in a variety of experimental models derived from rodent tissues, including contact-inhibited rat liver progenitor cells (where TCDD induces cell proliferation), rat and mouse hepatoma cell models (where TCDD inhibits cell cycle progression), cardiac cells derived from the mouse embryonic stem cells, or cardiomyocytes isolated from neonatal rat hearts. The small interfering RNA (siRNA)-mediated knockdown of AhR confirmed its role in both basal and TCDD-deregulated Jup expression. The analysis of genomic DNA located ~2.5kb upstream of rat Jup gene revealed a presence of evolutionarily conserved AhR binding motifs, which were confirmed upon their cloning into luciferase reporter construct. The siRNA-mediated knockdown of Jup expression affected both proliferation and attachment of liver progenitor cells. The present data indicate that the AhR may contribute to negative regulation of Jup gene expression in rodent cellular models, which may affect cell adherence and proliferation.


Toxicology Letters | 2015

Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription.

Markéta Kabátková; Jana Svobodová; Kateřina Pěnčíková; Dilshad Shaik Mohatad; Lenka Šmerdová; Alois Kozubík; Miroslav Machala; Jan Vondráček

Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis.


Mutagenesis | 2015

Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation.

Markéta Kabátková; Ondřej Zapletal; Zuzana Tylichová; Jiří Neča; Miroslav Machala; Alena Milcova; Jan Topinka; Alois Kozubík; Jan Vondráček

Deregulation of Wnt/β-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/β-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of β-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting β-catenin, we then found that β-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon β-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of β-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity.


Toxicology | 2015

The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis.

Jana Svobodová; Markéta Kabátková; Lenka Šmerdová; Petra Brenerová; Zdeněk Dvořák; Miroslav Machala; Jan Vondráček

Inhibition of apoptosis by the ligands of the aryl hydrocarbon receptor (AhR) has been proposed to play a role in their tumor promoting effects on liver parenchymal cells. However, little is presently known about the impact of toxic AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on apoptosis in other liver cell types, such as in liver epithelial/progenitor cells. In the present study, we focused on the effects of TCDD on apoptosis regulation in a model of liver progenitor cells, rat WB-F344 cell line, during the TCDD-elicited release from contact inhibition. The stimulation of cell proliferation in this cell line was associated with deregulated expression of a number of genes known to be under transcriptional control of the Hippo signaling pathway, a principal regulatory pathway involved in contact inhibition of cell proliferation. Interestingly, we found that mRNA and protein levels of survivin, a known Hippo target, which plays a role both in cell division and inhibition of apoptosis, were significantly up-regulated in rat liver epithelial cell model, as well as in undifferentiated human liver HepaRG cells. Using the short interfering RNA-mediated knockdown, we confirmed that survivin plays a central role in cell division of WB-F344 cells. When evaluating the effects of TCDD on apoptosis induction by camptothecin, a genotoxic topoisomerase I inhibitor, we observed that the pre-treatment of WB-F344 cells with TCDD increased number of cells with apoptotic nuclear morphology, and it potentiated cleavage of both caspase-3 and poly(ADP-ribose) polymerase I. This indicated that despite the observed up-regulation of survivin, apoptosis induced by the genotoxin was potentiated in the model of rat liver progenitor cells. The present results indicate that, unlike in hepatocytes, AhR agonists may not prevent induction of apoptosis elicited by DNA-damaging agents in a model of rat liver progenitor cells.


Toxicology Letters | 2016

The intersections of AhR activity and oncogenic signaling

Jan Vondráček; Jana Svobodová; Jirina Prochazkova; Lenka Šmerdová; Markéta Kabátková; Miroslav Machala


Toxicology Letters | 2016

Deregulation of the AhR-dependent CYP1 expression under conditions modulating contact inhibition or cell proliferation in liver cell models

Jana Svobodová; Petr Rogowski; Markéta Kabátková; Ondřej Zapletal; Miroslav Machala; Jan Vondráček

Collaboration


Dive into the Markéta Kabátková's collaboration.

Top Co-Authors

Avatar

Jan Vondráček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Svobodová

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Lenka Šmerdová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiřina Procházková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Topinka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lenka Umannová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alena Milcova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge