Markku Heikinheimo
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markku Heikinheimo.
Nature Medicine | 2000
Chun Kung; Jeanette T. Pingel; Markku Heikinheimo; Timo Klemola; Kari Varkila; Lina I. Yoo; Katri Vuopala; Minna Poyhonen; Matti Uhari; Martin Rogers; Samuel H. Speck; Talal A. Chatila; Matthew L. Thomas
The hematopoietic-specific transmembrane protein tyrosine phosphatase CD45 functions to regulate Src kinases required for T- and B-cell antigen receptor signal transduction. So far, there have been no reports to our knowledge of a human deficiency in a tyrosine-specific phosphatase. Here, we identified a male patient with a deficiency in CD45 due to a large deletion at one allele and a point mutation at the other. The point mutation resulted in the alteration of intervening sequence 13 donor splice site. The patient presented at 2 months of age with severe combined immunodeficiency disease. The population of peripheral blood T lymphocytes was greatly diminished and unresponsive to mitogen stimulation. Despite normal B-lymphocyte numbers, serum immunoglobulin levels decreased with age. Thus, CD45 deficiency in humans results in T- and B-lymphocyte dysfunction.
Mechanisms of Development | 1994
Markku Heikinheimo; Avril Lawshé; Gregory M. Shackleford; David B. Wilson; Craig A. MacArthur
Fgf-8 is a member of the fibroblast growth factor (FGF) family that was initially identified as an androgen-inducible growth factor in a mammary carcinoma cell line. Alternative splicing of the primary Fgf-8 transcript results in three messenger RNAs which code for secreted FGF-8 protein isoforms that differ only in their mature amino termini. Fgf-8 RNA is present from day 10 through 12 of murine gestation when analyzed by northern blot analysis, suggesting that Fgf-8 normally functions during post-gastrulation development. To characterize the temporal, spatial and isoform-specific aspects of Fgf-8 expression during mouse development, we performed in situ hybridization and ribonuclease protection assays between the days 8 and 16 of gestation. Fgf-8 expression is first detected at day 9 of gestation in the surface ectoderm of the first branchial arches, the frontonasal process, the forebrain and the midbrain-hindbrain junction. At days 10-12 of gestation, Fgf-8 expression is detected in the surface ectoderm of the forelimb and hindlimb buds, in the nasal pits and nasopharynx, in the infundibulum and in the telencephalon, diencephalon and metencephalon. Fgf-8 expression continues in the developing hindlimbs through day 13 of gestation but is undetectable thereafter. Ribonuclease protection assays reveal that RNAs coding for all three FGF-8 isoforms are present at days 10-12 of gestation. These results reveal a unique temporal and spatial pattern of Fgf-8 expression in the developing mouse and suggest a role for this FGF in multiple regions of ectodermal differentiation in the post-gastrulation mouse embryo.
Mechanisms of Development | 1998
Mika Laitinen; Kaisa Vuojolainen; Risto Jaatinen; Ilkka Ketola; Johanna Aaltonen; Eero Lehtonen; Markku Heikinheimo; Olli Ritvos
Growth differentiation factor-9 (GDF-9) is a transforming growth factor-b (TGF-b) family member which is expressed in the oocytes in mouse ovaries (McGrath, S.A., Esquela, A.F., Lee, S.J., 1995. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9, 131-136). GDF-9 is indispensable for normal folliculogenesis since female mice deficient for the GDF-9 gene are infertile due to an arrest of follicular growth at the primary follicle stage (Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R. , Lu, N., Matzuk, M.M., 1996. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531-535). We searched the GenBank Expressed Sequence Tag (EST) database with the mouse GDF-9 cDNA sequence, and identified from a mouse 2-cell embryo library an EST cDNA that encodes a putative member of the TGF-b superfamily, and named it as GDF-9B. Northern blot hybridization analyses of mouse ovaries revealed a single transcript of approximately 4.0 kilobases (kb) for GDF-9B and of 2.0 kb for GDF-9. We cloned by reverse transcription-polymerase chain reaction from mouse ovarian RNA a partial 821-base pair GDF-9B cDNA that spans the sequence encoding the putative mature region of GDF-9B. The COOH-terminal region of GDF-9B appears to be 53% homologous to GDF-9. Moreover, like GDF-9, GDF-9B lacks the cysteine residue needed for the covalent dimerization of several TGF-b family members. Using in situ hybridization analysis, we demonstrate that GDF-9B and GDF-9 mRNAs are co-localized in the oocyte. We also show that GDF-9B and GDF-9 genes are co-ordinately expressed during follicular development.
Molecular Endocrinology | 2008
Robert S. Viger; Séverine Mazaud Guittot; Mikko Anttonen; David B. Wilson; Markku Heikinheimo
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Modern Pathology | 2010
Stacey Jamieson; Ralf Bützow; Noora Andersson; Maria Alexiadis; Leila Unkila-Kallio; Markku Heikinheimo; Peter J. Fuller; Mikko Anttonen
Granulosa cell tumors of the ovary represent ∼5% of malignant ovarian cancers. It has recently been reported that 95–97% of adult granulosa cell tumors carry a unique somatic mutation in the FOXL2 gene. We undertook this study to verify the presence of the FOXL2 Cys134Trp mutation in two geographically independent cohorts of granulosa cell tumors and to examine the expression pattern of FOXL2 in these tumors. A total of 56 tumors with the histological diagnosis of adult granulosa cell tumor from two centers, Melbourne and Helsinki, were examined for the presence of the mutation using direct sequence analysis. Two granulosa cell tumor-derived cell lines, COV434 and KGN, three juvenile granulosa cell tumors and control tissues were also examined. The expression of the FOXL2 gene was determined using quantitative RT-PCR and/or immunohistochemistry. We found that 52 of the 56 adult granulosa cell tumors harbor the mutation, of which three were hemi/homozygous. Of the four cases with wild-type FOXL2 sequence, reappraisal suggests that three may have been misclassified at primary diagnosis. The KGN cells were heterozygous for the mutation, whereas the COV434 cells had a wild-type FOXL2 genotype. The expression levels of FOXL2 were similar across the adult granulosa cell tumors and the normal ovary controls; one mutation-negative granulosa cell tumor had high FOXL2 mRNA levels, whereas the COV434 cells and two of the three juvenile granulosa cell tumors lacked the expression of FOXL2. Our data provide confirmation of the frequent presence of the FOXL2 C134W mutation in adult granulosa cell tumors and demonstrate that the mutation is not associated with altered FOXL2 expression. The mutation analysis may be a useful tool to differentiate particularly between cell-rich diffuse granulosa cell tumors and mitotically active sex cord-stromal tumors. This unique FOXL2 mutation appears to be characteristic of adult granulosa cell tumors.
American Journal of Pathology | 2000
Vesa Ruotsalainen; Jaakko Patrakka; Päivi Tissari; Paula Reponen; Michael W. Hess; Marjo Kestilä; Christer Holmberg; Riitta Salonen; Markku Heikinheimo; Jorma Wartiovaara; Karl Tryggvason; Hannu Jalanko
Nephrin is a cell adhesion protein located at the slit diaphragm area of glomerular podocytes. Mutations in nephrin-coding gene (NPHS1) cause congenital nephrotic syndrome (NPHS1). We studied the developmental expression of nephrin, ZO-1 and P-cadherin in normal fetal kidneys and in NPHS1 kidneys. We used in situ hybridization and immunohistochemistry at light and electron microscopic levels. Nephrin and zonula occludens-1 (ZO-1) were first expressed in late S-shaped bodies. During capillary loop stage, nephrin and ZO-1 localized at the basal margin and in the cell-cell adhesion sites between developing podocytes, especially in junctions with ladder-like structures. In mature glomeruli, nephrin and ZO-1 concentrated at the slit diaphragm area. P-cadherin was first detected in ureteric buds, tubules, and vesicle stage glomeruli. Later, P-cadherin was seen at the basal margin of developing podocytes. Fetal NPHS1 kidneys with Fin-major/Fin-major genotype did not express nephrin, whereas the expression of ZO-1 and P-cadherin was comparable to that of control kidneys. Although early junctional complexes proved structurally normal, junctions with ladder-like structures and slit diaphragms were completely missing. The results indicate that nephrin is dispensable for early development of podocyte junctional complexes. However, nephrin appears to be essential for formation of junctions with ladder-like structures and slit diaphragms.
Biology of Reproduction | 2003
Mikko Anttonen; Ilkka Ketola; Helka Parviainen; Anna-Kaisa Pusa; Markku Heikinheimo
Abstract Transcription factor GATA-4 has been suggested to have a role in mammalian gonadogenesis, e.g., through activation of the Müllerian-inhibiting substance (MIS) gene expression. Although the expression of GATA-4 during gonadogenesis has been elucidated in detail, very little is known about FOG-2, an essential cofactor for GATA-4, in ovarian development. We explored in detail the expression of FOG-2 and GATA-4 in the fetal and postnatal mouse ovary and in the fetal testis using Northern blotting, RNA in situ hybridization, and immunohistochemistry. GATA-4 and FOG-2 are evident in the bipotential urogenital ridge, and their expression persists in the fetal mouse ovary; this result is different from earlier reports of GATA-4 downregulation in the fetal ovary. In contrast to ovary, FOG-2 expression is lost in the fetal Sertoli cells along with the formation of the testicular cords, leading to the hypothesis that FOG-2 has a specific role in the fetal ovaries counteracting the transactivation of the MIS gene by GATA-4. In vitro transfection assays verified that FOG-2 is able to repress the effect of GATA-4 on MIS transactivation in granulosa cells. In postnatal ovary, granulosa cells of growing follicles express FOG-2, partially overlapping with the expression of MIS. These data suggest an important role for FOG-2 and the GATA transcription factors in the developing ovary.
Veterinary Pathology | 2006
M. Bielinska; S. Kiiveri; H. Parviainen; S. Mannisto; Markku Heikinheimo; David B. Wilson
Sex steroid-producing adrenocortical adenomas and carcinomas occur frequently in neutered ferrets, but the molecular events underlying tumor development are not well understood. Prepubertal gonadectomy elicits similar tumors in certain inbred or genetically engineered strains of mice, and these mouse models shed light on tumorigenesis in ferrets. in mice and ferrets, the neoplastic adrenocortical cells, which functionally resemble gonadal steroidogenic cells, arise from progenitors in the subcapsular or juxtamedullary region. Tumorigenesis in mice is influenced by the inherent susceptibility of adrenal tissue to gonadectomy-induced hormonal changes. The chronic elevation in circulating luteinizing hormone that follows ovariectomy or orchiectomy is a prerequisite for neoplastic transformation. Gonadectomy alters the plasma or local concentrations of steroid hormones and other factors that affect adrenocortical tumor development, including inhibins, activins, and Müllerian inhibiting substance. GATA-4 immunoreactivity is a hallmark of neoplastic transformation, and this transcription factor might serve to integrate intracellular signals evoked by different hormones. Synergistic interactions among GATA-4, steroidogenic factor-1, and other transcription factors enhance expression of inhibin-α and genes critical for ectopic sex steroid production, such as cytochrome P450 17α-hydroxylase/17,20 lyase and aromatase. Cases of human adrenocortical neoplasia have been linked to precocious expression of hormone receptors and to mutations that alter the activity of G-proteins or downstream effectors. Whether such genetic changes contribute to tissue susceptibility to neoplasia in neutered ferrets and mice awaits further study.
Molecular and Cellular Endocrinology | 2011
Antti Kyrönlahti; Rosemarie Euler; Malgorzata Bielinska; Erica L. Schoeller; Kelle H. Moley; Jorma Toppari; Markku Heikinheimo; David B. Wilson
Transcription factor GATA4 is expressed in Sertoli and Leydig cells and is required for proper development of the murine fetal testis. The role of GATA4 in adult testicular function, however, has remained unclear due to prenatal lethality of mice harboring homozygous mutations in Gata4. To characterize the function of GATA4 in the adult testis, we generated mice in which Gata4 was conditionally deleted in Sertoli cells using Cre-LoxP recombination with Amhr2-Cre. Conditional knockout (cKO) mice developed age-dependent testicular atrophy and loss of fertility, which coincided with decreases in the quantity and motility of sperm. Histological analysis demonstrated Sertoli cell vacuolation, impaired spermatogenesis, and increased permeability of the blood-testis barrier. RT-PCR analysis of cKO testes showed decreased expression of germ cell markers and increased expression of testicular injury markers. Our findings support the premise that GATA4 is a key transcriptional regulator of Sertoli cell function in adult mice.
Laboratory Investigation | 2001
Heini Lassus; Mika Laitinen; Mikko Anttonen; Markku Heikinheimo; Lauri A. Aaltonen; Olli Ritvos; Ralf Bützow
Using comparative genomic hybridization (CGH), we have previously demonstrated frequent loss of 8p, especially its distal part, in ovarian carcinoma. To compare the deletion map of distal 8p in serous and mucinous ovarian carcinomas, we performed allelic analysis with 18 polymorphic microsatellite markers at 8p21–p23. In serous carcinoma, loss of heterozygosity (LOH) was detected in 67% of the samples, and the majority of the carcinomas showed loss of all or most of the informative markers. In contrast, only 21% of mucinous carcinomas showed allelic loss, with only one or two loci showing LOH in each sample. In serous carcinomas, LOH was associated with higher grade tumors. Three distinct minimal common regions of loss could be defined in serous carcinomas (at 8p21.1, 8p22–p23.1, and 8p23.1). Expression of a transcription factor gene, GATA4, located at one of these regions (8p23.1) was studied in serous and mucinous ovarian carcinomas by Northern blotting and immunohistochemical staining of tumor microarray. Expression was found to be lost in most serous carcinomas but retained in the majority of mucinous carcinomas. Our results suggest distinct pathogenetic pathways in serous and mucinous ovarian carcinomas and the presence of more than one tumor suppressor gene at 8p involved in the tumorigenesis of serous carcinoma.