Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markku Varjosalo is active.

Publication


Featured researches published by Markku Varjosalo.


Genes & Development | 2008

Hedgehog: functions and mechanisms

Markku Varjosalo; Jussi Taipale

The Hedgehog (Hh) family of proteins control cell growth, survival, and fate, and pattern almost every aspect of the vertebrate body plan. The use of a single morphogen for such a wide variety of functions is possible because cellular responses to Hh depend on the type of responding cell, the dose of Hh received, and the time cells are exposed to Hh. The Hh gradient is shaped by several proteins that are specifically required for Hh processing, secretion, and transport through tissues. The mechanism of cellular response, in turn, incorporates multiple feedback loops that fine-tune the level of signal sensed by the responding cells. Germline mutations that subtly affect Hh pathway activity are associated with developmental disorders, whereas somatic mutations activating the pathway have been linked to multiple forms of human cancer. This review focuses broadly on our current understanding of Hh signaling, from mechanisms of action to cellular and developmental functions. In addition, we review the role of Hh in the pathogenesis of human disease and the possibilities for therapeutic intervention.


Nature | 2006

Identification of pathways regulating cell size and cell-cycle progression by RNAi

Mikael Björklund; Minna Taipale; Markku Varjosalo; Juha Saharinen; Juhani Lahdenperä; Jussi Taipale

Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38βMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.


Cell | 2008

Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling

Markku Varjosalo; Mikael Björklund; Fang Cheng; Heidi Syvänen; Teemu Kivioja; Sami Kilpinen; Zairen Sun; Olli Kallioniemi; Hendrik G. Stunnenberg; Wei-Wu He; Päivi M. Ojala; Jussi Taipale

To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.


Nature Methods | 2013

Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS

Markku Varjosalo; Roberto Sacco; Alexey Stukalov; Audrey van Drogen; Melanie Planyavsky; Simon Hauri; Ruedi Aebersold; Keiryn L. Bennett; Jacques Colinge; Matthias Gstaiger; Giulio Superti-Furga

The characterization of all protein complexes of human cells under defined physiological conditions using affinity purification–mass spectrometry (AP-MS) is a highly desirable step in the quest to understand the phenotypic effects of genomic information. However, such a challenging goal has not yet been achieved, as it requires reproducibility of the experimental workflow and high data consistency across different studies and laboratories. We systematically investigated the reproducibility of a standardized AP-MS workflow by performing a rigorous interlaboratory comparative analysis of the interactomes of 32 human kinases. We show that it is possible to achieve high interlaboratory reproducibility of this standardized workflow despite differences in mass spectrometry configurations and subtle sample preparation–related variations and that combination of independent data sets improves the approach sensitivity, resulting in even more-detailed networks. Our analysis demonstrates the feasibility of obtaining a high-quality map of the human protein interactome with a multilaboratory project.


Cell Reports | 2013

The Protein Interaction Landscape of the Human CMGC Kinase Group

Markku Varjosalo; Salla Keskitalo; Audrey van Drogen; Helka Nurkkala; Anton Vichalkovski; Ruedi Aebersold; Matthias Gstaiger

Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways.


Cell Reports | 2014

Uterine Leiomyoma-Linked MED12 Mutations Disrupt Mediator-Associated CDK Activity

Mikko P. Turunen; Jason M. Spaeth; Salla Keskitalo; Min Ju Park; Teemu Kivioja; Alison D. Clark; Netta Mäkinen; Fangjian Gao; Kimmo Palin; Helka Nurkkala; Anna Vähärautio; Mervi Aavikko; Kati Kämpjärvi; Pia Vahteristo; Chongwoo A. Kim; Lauri A. Aaltonen; Markku Varjosalo; Jussi Taipale; Thomas G. Boyer

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at very high frequency (∼70%) in uterine leiomyomas. However, the influence of these mutations on Mediator function and the molecular basis for their tumorigenic potential remain unknown. To clarify the impact of these mutations, we used affinity-purification mass spectrometry to establish the global protein-protein interaction profiles for both wild-type and mutant MED12. We found that uterine leiomyoma-linked mutations in MED12 led to a highly specific decrease in its association with Cyclin C-CDK8/CDK19 and loss of Mediator-associated CDK activity. Mechanistically, this occurs through disruption of a MED12-Cyclin C binding interface that we also show is required for MED12-mediated stimulation of Cyclin C-dependent CDK8 kinase activity. These findings indicate that uterine leiomyoma-linked mutations in MED12 uncouple Cyclin C-CDK8/19 from core Mediator and further identify the MED12/Cyclin C interface as a prospective therapeutic target in CDK8-driven cancers.


PLOS Pathogens | 2009

KSHV Reactivation from Latency Requires Pim-1 and Pim-3 Kinases to Inactivate the Latency-Associated Nuclear Antigen LANA

Fang Cheng; Magdalena Weidner-Glunde; Markku Varjosalo; Eeva-Marja Rainio; Anne Lehtonen; Thomas F. Schulz; Päivi J. Koskinen; Jussi Taipale; Päivi M. Ojala

Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposis sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention.


Molecular Systems Biology | 2013

Interaction proteome of human Hippo signaling: modular control of the co‐activator YAP1

Simon Hauri; Alexander Wepf; Audrey van Drogen; Markku Varjosalo; Nic Tapon; Ruedi Aebersold; Matthias Gstaiger

Tissue homeostasis is controlled by signaling systems that coordinate cell proliferation, cell growth and cell shape upon changes in the cellular environment. Deregulation of these processes is associated with human cancer and can occur at multiple levels of the underlying signaling systems. To gain an integrated view on signaling modules controlling tissue growth, we analyzed the interaction proteome of the human Hippo pathway, an established growth regulatory signaling system. The resulting high‐resolution network model of 480 protein‐protein interactions among 270 network components suggests participation of Hippo pathway components in three distinct modules that all converge on the transcriptional co‐activator YAP1. One of the modules corresponds to the canonical Hippo kinase cassette whereas the other two both contain Hippo components in complexes with cell polarity proteins. Quantitative proteomic data suggests that complex formation with cell polarity proteins is dynamic and depends on the integrity of cell‐cell contacts. Collectively, our systematic analysis greatly enhances our insights into the biochemical landscape underlying human Hippo signaling and emphasizes multifaceted roles of cell polarity complexes in Hippo‐mediated tissue growth control.


Proteomics | 2015

Navigating through metaproteomics data - a logbook of database searching

Thilo Muth; Carolin Kolmeder; Jarkko Salojärvi; Salla Keskitalo; Markku Varjosalo; Froukje J. Verdam; Sander S. Rensen; Udo Reichl; Willem M. de Vos; Erdmann Rapp; Lennart Martens

Metaproteomic research involves various computational challenges during the identification of fragmentation spectra acquired from the proteome of a complex microbiome. These issues are manifold and range from the construction of customized sequence databases, the optimal setting of search parameters to limitations in the identification search algorithms themselves. In order to assess the importance of these individual factors, we studied the effect of strategies to combine different search algorithms, explored the influence of chosen database search settings, and investigated the impact of the size of the protein sequence database used for identification. Furthermore, we applied de novo sequencing as a complementary approach to classic database searching. All evaluations were performed on a human intestinal metaproteome dataset. Pyrococcus furiosus proteome data were used to contrast database searching of metaproteomic data to a classic proteomic experiment. Searching against subsets of metaproteome databases and the use of multiple search engines increased the number of identifications. The integration of P. furiosus sequences in a metaproteomic sequence database showcased the limitation of the target‐decoy‐controlled false discovery rate approach in combination with large sequence databases. The selection of varying search engine parameters and the application of de novo sequencing represented useful methods to increase the reliability of the results. Based on our findings, we provide recommendations for the data analysis that help researchers to establish or improve analysis workflows in metaproteomics.


Journal of Cell Science | 2011

Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia.

Juha Saarikangas; Pieta K. Mattila; Markku Varjosalo; Miia Bovellan; Janne Hakanen; Julia Calzada-Wack; Monica Tost; Luise Jennen; Birgit Rathkolb; Wolfgang Hans; Marion Horsch; Mervi E. Hyvönen; Nina Perälä; Helmut Fuchs; Valérie Gailus-Durner; Irene Esposito; Eckhard Wolf; Martin Hrabé de Angelis; Mikko J. Frilander; Harri Savilahti; Hannu Sariola; Kirsi Sainio; Sanna Lehtonen; Jussi Taipale; Marjo Salminen; Pekka Lappalainen

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.

Collaboration


Dive into the Markku Varjosalo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaisa Lehti

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaonan Liu

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge