Marko Bajec
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marko Bajec.
Information Systems | 2005
Marko Bajec; Marjan Krisper
Business rules are evidently important for organisations as they describe how they are doing business. Their value has also been recognised within the information system (IS) domain, mostly because of their ability to make applications flexible and amenable to change. In this paper, we propose a methodology that helps business people and developers to keep business rules at the business level inline with the rules that are implemented at the system level. In contrast to several existing approaches that primarily focus on business rules in the scope of an application, our methodology addresses the entire IS of an organisation. The paper also describes requirements for a tool support that would be appropriate to support the methodology.
Journal of Cheminformatics | 2015
Martin Krallinger; Obdulia Rabal; Florian Leitner; Miguel Vazquez; David Salgado; Zhiyong Lu; Robert Leaman; Yanan Lu; Donghong Ji; Daniel M. Lowe; Roger A. Sayle; Riza Theresa Batista-Navarro; Rafal Rak; Torsten Huber; Tim Rocktäschel; Sérgio Matos; David Campos; Buzhou Tang; Hua Xu; Tsendsuren Munkhdalai; Keun Ho Ryu; S. V. Ramanan; Senthil Nathan; Slavko Žitnik; Marko Bajec; Lutz Weber; Matthias Irmer; Saber A. Akhondi; Jan A. Kors; Shuo Xu
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/
European Physical Journal B | 2011
Lovro Šubelj; Marko Bajec
Label propagation has proven to be an extremely fast method for detecting communities in large complex networks. Furthermore, due to its simplicity, it is also currently one of the most commonly adopted algorithms in the literature. Despite various subsequent advances, an important issue of the algorithm has not yet been properly addressed. Random (node) update orders within the algorithm severely hamper its robustness, and consequently also the stability of the identified community structure. We note that an update order can be seen as increasing propagation preferences from certain nodes, and propose a balanced propagation that counteracts for the introduced randomness by utilizing node balancers. We have evaluated the proposed approach on synthetic networks with planted partition, and on several real-world networks with community structure. The results confirm that balanced propagation is significantly more robust than label propagation, when the performance of community detection is even improved. Thus, balanced propagation retains high scalability and algorithmic simplicity of label propagation, but improves on its stability and performance.
Physical Review E | 2011
Lovro Šubelj; Marko Bajec
Label propagation has proven to be a fast method for detecting communities in large complex networks. Recent developments have also improved the accuracy of the approach; however, a general algorithm is still an open issue. We present an advanced label propagation algorithm that combines two unique strategies of community formation, namely, defensive preservation and offensive expansion of communities. The two strategies are combined in a hierarchical manner to recursively extract the core of the network and to identify whisker communities. The algorithm was evaluated on two classes of benchmark networks with planted partition and on 23 real-world networks ranging from networks with tens of nodes to networks with several tens of millions of edges. It is shown to be comparable to the current state-of-the-art community detection algorithms and superior to all previous label propagation algorithms, with comparable time complexity. In particular, analysis on real-world networks has proven that the algorithm has almost linear complexity, O(m¹·¹⁹), and scales even better than the basic label propagation algorithm (m is the number of edges in the network).
Information & Software Technology | 2007
Marko Bajec; Damjan Vavpotič; Marjan Krisper
Both practitioners and researchers agree that if software development methods were more adjustable to project-specific situations, this would increase their use in practice. Empirical investigations show that otherwise methods exist just on paper while in practice developers avoid them or do not follow them rigorously. In this paper we present an approach that deals with this problem. Process Configuration, as we named the approach, tells how to create a project-specific method from an existing one, taking into account the project circumstances. Compared to other approaches that deal with the creation of project-specific methods, our approach tends to be more flexible and easier to implement in practice as it introduces few simplifications. The proposed approach is practice-driven, i.e. it has been developed in cooperation with software development companies.
Expert Systems With Applications | 2011
Lovro Šubelj; Štefan Furlan; Marko Bajec
The article proposes an expert system for detection, and subsequent investigation, of groups of collaborating automobile insurance fraudsters. The system is described and examined in great detail, several technical difficulties in detecting fraud are also considered, for it to be applicable in practice. Opposed to many other approaches, the system uses networks for representation of data. Networks are the most natural representation of such a relational domain, allowing formulation and analysis of complex relations between entities. Fraudulent entities are found by employing a novel assessment algorithm, Iterative Assessment Algorithm (IAA), also presented in the article. Besides intrinsic attributes of entities, the algorithm explores also the relations between entities. The prototype was evaluated and rigorously analyzed on real world data. Results show that automobile insurance fraud can be efficiently detected with the proposed system and that appropriate data representation is vital.
Physica A-statistical Mechanics and Its Applications | 2011
Lovro Šubelj; Marko Bajec
Due to notable discoveries in the fast evolving field of complex networks, recent research in software engineering has also focused on representing software systems with networks. Previous work has observed that these networks follow scale-free degree distributions and reveal small-world phenomena, while we here explore another property commonly found in different complex networks, i.e. community structure. We adopt class dependency networks, where nodes represent software classes and edges represent dependencies among them, and show that these networks reveal a significant community structure, characterized by similar properties as observed in other complex networks. However, although intuitive and anticipated by different phenomena, identified communities do not exactly correspond to software packages. We empirically confirm our observations on several networks constructed from Java and various third party libraries, and propose different applications of community detection to software engineering.
Physica A-statistical Mechanics and Its Applications | 2012
Neli Blagus; Lovro Šubelj; Marko Bajec
Despite their diverse origin, networks of large real-world systems reveal a number of common properties including small-world phenomena, scale-free degree distributions and modularity. Recently, network self-similarity as a natural outcome of the evolution of real-world systems has also attracted much attention within the physics literature. Here we investigate the scaling of density in complex networks under two classical box-covering renormalizations–network coarse-graining–and also different community-based renormalizations. The analysis on over 50 real-world networks reveals a power-law scaling of network density and size under adequate renormalization technique, yet irrespective of network type and origin. The results thus advance a recent discovery of a universal scaling of density among different real-world networks [P.J. Laurienti, K.E. Joyce, Q.K. Telesford, J.H. Burdette, S. Hayasaka, Universal fractal scaling of self-organized networks, Physica A 390 (20) (2011) 3608–3613] and imply an existence of a scale-free density also within–among different self-similar scales of–complex real-world networks. The latter further improves the comprehension of self-similar structure in large real-world networks with several possible applications.
European Physical Journal B | 2012
Lovro Šubelj; Marko Bajec
Abstract Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.
Journal of Informetrics | 2015
Dalibor Fiala; Lovro Šubelj; Slavko Žitnik; Marko Bajec
The basic indicators of a researchers productivity and impact are still the number of publications and their citation counts. These metrics are clear, straightforward, and easy to obtain. When a ranking of scholars is needed, for instance in grant, award, or promotion procedures, their use is the fastest and cheapest way of prioritizing some scientists over others. However, due to their nature, there is a danger of oversimplifying scientific achievements. Therefore, many other indicators have been proposed including the usage of the PageRank algorithm known for the ranking of webpages and its modifications suited to citation networks. Nevertheless, this recursive method is computationally expensive and even if it has the advantage of favouring prestige over popularity, its application should be well justified, particularly when compared to the standard citation counts. In this study, we analyze three large datasets of computer science papers in the categories of artificial intelligence, software engineering, and theory and methods and apply 12 different ranking methods to the citation networks of authors. We compare the resulting rankings with self-compiled lists of outstanding researchers selected as frequent editorial board members of prestigious journals in the field and conclude that there is no evidence of PageRank-based methods outperforming simple citation counts.