Marko Damjanović
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marko Damjanović.
Journal of the American Chemical Society | 2013
Marko Damjanović; Keiichi Katoh; Masahiro Yamashita; Markus Enders
Several small paramagnetic complexes combine large hyperfine NMR shifts with large magnetic anisotropies. The latter are a prerequisite for single molecule magnet (SMM) behavior. We choose the SMM tris(octabutoxyphthalocyaninato) diterbium (1) for a high resolution NMR study where we combined for the first time a comprehensive (1)H and (13)C chemical shift analysis of a SMM with the evaluation of large residual dipolar couplings (RDCs). The latter are a consequence of partial alignment of SMM 1 in the strong magnetic field of the NMR spectrometer. To the best of our knowledge RDCs in SMMs have never been reported before. We measured RDCs between -78 and +99 Hz for the (13)C-(1)H vectors of CH bonds and up to -109 Hz for (1)H-(1)H vectors of geminal hydrogen atoms (magnetic field of 14.09 T, temperature 295 K). Considerable negative Fermi contact shifts (up to -60 ppm) were determined for (13)C atoms at the phthalocyaninato core. Paramagnetic (13)C NMR shifts of the butoxy chains as well as all (1)H NMR chemical shifts are a result of pseudocontact shifts (pcs), and therefore it is easily possible to determine the positions of the respective nuclei in solution. Measurements of CH and HH vectors by RDC analysis are in accordance with the geometry as determined by the pseudocontact shifts, but in addition to that, RDCs give information about internal mobility. The axial component of the magnetic susceptibility tensor has been determined independently by pcs and by RDC.
Chemistry: A European Journal | 2015
Marko Damjanović; Takaumi Morita; Keiichi Katoh; Masahiro Yamashita; Markus Enders
The phthalocyaninato double-decker complexes [M(obPc)2 ](0) (M= Y(III) , Tb(III) , Dy(III) ; obPc=2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato), along with their reduced ([M(obPc)2 ](-) [P(Ph)4 ](+) ; M=Tb(III) , Dy(III) ) and oxidized ([M(obPc)2 ](+) [SbCl6 ](-) (M=Y(III) , Tb(III) ) counterparts were studied with (1) H, (13) C and 2D NMR. From the NMR data of the neutral (i.e., with one unpaired electron in the ligands) and anionic Tb(III) complexes, along with the use of dispersion corrected DFT methods, it was possible to separate the metal-centered and ligand-centered contributions to the hyperfine NMR shift. These contributions to the (1) H and (13) C hyperfine NMR shifts were further analyzed in terms of pseudocontact and Fermi contact shifts. Furthermore, from a combination of NMR data and DFT calculations, we have determined the spin multiplicity of the neutral complexes [M(obPc)2 ](0) (M=Tb(III) and Dy(III) ) at room temperature. From the NMR data of the cationic Tb(III) complex, for which actually no experimental structure determination is available, we have analyzed the structural changes induced by oxidation from its neutral/anionic species and shown that the interligand distance decreases upon oxidation. The fast electron exchange process between the neutral and anionic Tb(III) double-decker complexes was also studied.
Journal of the American Chemical Society | 2017
Parisa Abbasi; Kevan Quinn; Dimitris Alexandropoulos; Marko Damjanović; Wolfgang Wernsdorfer; Albert Escuer; Julia Mayans; Melanie Pilkington; Theocharis C. Stamatatos
The first {Mn31} cluster (1) has been prepared from carboxylate ions and the chelating/bridging ligand α-methyl-2-pyridine-methanol. Compound 1 possesses a unique nanosized structural topology with one of the largest energy barriers reported to-date for high-nuclearity 3d-metal clusters. Single-crystal magnetic hysteresis studies reveal the presence of hysteresis loops below 5 K, one of the highest temperatures below which molecular hysteresis has been observed for 3d-based SMMs.
Journal of the American Chemical Society | 2018
Takaumi Morita; Marko Damjanović; Keiichi Katoh; Yasutaka Kitagawa; Nobuhiro Yasuda; Yanhua Lan; Wolfgang Wernsdorfer; Brian K. Breedlove; Markus Enders; Masahiro Yamashita
Herein we report the synthesis and characterization of a dinuclear TbIII single-molecule magnet (SMM) with two [TbPc2]0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the TbIII ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc2]-/0/+ and the axially symmetric dinuclear TbIII phthalocyaninato triple-decker complex (Tb2(obPc)3). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc2 unit is PQTM, the probability of QTM simultaneously occurring in 1 is PQTM2, meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (TB) was determined to be ca. 16 K with an energy barrier for spin reversal (Ueff) of 588 cm-1 (847 K) due to D4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (Hbias), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported TbIII triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large Ueff causes strong uniaxial magnetic anisotropy in 1, leading to a χax value (1.39 × 10-30 m3) that is larger than that for Tb2(obPc)3 (0.86 × 10-30 m3). Controlling the coordination environment and spin arrangement is an effective technique for suppressing QTM in TbPc2-based SMMs.
Angewandte Chemie | 2017
Eufemio Moreno-Pineda; Marko Damjanović; Olaf Fuhr; Wolfgang Wernsdorfer; Mario Ruben
Two dysprosium isotopic isomers were synthesized: Et4 N[163 DyPc2 ] (1) with I=5/2 and Et4 N[164 DyPc2 ] (2) with I=0 (where Pc=phthalocyaninato). Both isotopologues are single-molecule magnets (SMMs); however, their relaxation times as well as their magnetic hystereses differ considerably. Quantum tunneling of the magnetization (QTM) at the energy level crossings is found for both systems via ac-susceptibility and μ-SQUID measurements. μ-SQUID studies of 1(I=5/2) reveal several nuclear-spin-driven QTM events; hence determination of the hyperfine coupling and the nuclear quadrupole splitting is possible. Compound 2(I=0) shows only strongly reduced QTM at zero magnetic field. 1(I=5/2) could be used as a multilevel nuclear spin qubit, namely qudit (d=6), for quantum information processing (QIP) schemes and provides an example of novel coordination-chemistry-discriminating nuclear spin isotopes. Our results show that the nuclear spin of the lanthanide must be included in the design principles of molecular qubits and SMMs.
Inorganic Chemistry | 2016
Benjamin Eberle; Marko Damjanović; Markus Enders; Simone Leingang; Jessica Pfisterer; Christoph Krämer; Olaf Hübner; Elisabeth Kaifer; Hans‐Jörg Himmel
In this work, the oxidation of several new dinuclear metal (M) acetate complexes of the redox-active guanidino-functionalized aromatic compound (GFA) 1,2,4,5-tetrakis(tetramethylguanidino)benzene (1) was studied. The complexes [1{M(OAc)2}2] (M = Ni or Pd) were oxidized to the radical monocationic complexes [1{M(OAc)2}2](+ •). From CV (cyclic voltammetry) measurements, the Gibbs free enthalpy for disproportionation of [1{M(OAc)2}2](+ •) into [1{M(OAc)2}2] and [1{M(OAc)2}2](2+) could be estimated to be roughly +20 kJ mol(-1) in CH2Cl2 solution. A characteristic feature of the [1{M(OAc)2}2](+ •) complexes is the presence of intense metal-ligand charge-transfer bands in the electronic absorption spectra. The complex [1{Ni(OAc)2}2](+ •) combines three paramagnetic centers with four metal-centered unpaired electrons and a ligand centered π-radical and exhibits a sextet electronic ground state. Spin distribution of the Ni complexes was evaluated by paramagnetic (1)H and (13)C NMR and was correlated with calculations. The strong ferromagnetic metal-ligand magnetic coupling was studied in the solid state by magnetometric (SQUID) measurements and by quantum chemical (DFT) calculations. The temperature dependence of the paramagnetic NMR shift was used for the evaluation of the magnetic coupling between the Ni centers and the π-radical in solution.
Angewandte Chemie | 2018
Kuduva R. Vignesh; Stuart K. Langley; Abinash Swain; Boujemaa Moubaraki; Marko Damjanović; Wolfgang Wernsdorfer; Gopalan Rajaraman; Keith S. Murray
The synthesis, magnetic properties, and theoretical studies of three heterometallic {CrIII LnIII6 } (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln3 triangles connected via a CrIII linker, are reported. The {CrTb6 } and {CrEr6 } analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single-crystal measurements reveal opening up of the hysteresis loop for {CrTb6 } and {CrHo6 } molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln3 triangles, which are found to couple, stabilizing a con-rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non DyIII complexes for the first time.
Chemistry: A European Journal | 2018
Yoji Horii; Shuhei Kishiue; Marko Damjanović; Keiichi Katoh; Brian K. Breedlove; Markus Enders; Masahiro Yamashita
A TbIII -phthalocyaninato double-decker ([1]0 ) single-molecule magnet (SMM) having four 15-crown-5 moieties in one of the ligands was synthesized, and its dimerization and magnetic properties were studied in an attempt to utilize the supramolecular aggregation for enhancing the SMM properties. Aggregation of [1]0 to form [12 K4 ]4+ in the presence of K+ ions was studied by using UV/Vis-NIR absorption and NMR spectroscopies. For the magnetic measurements, [1]0 and [12 K4 ]4+ were dispersed in poly(methyl methacrylate) (PMMA). UV/Vis-NIR absorption measurements on the PMMA dispersed samples were used to track the formation of [12 K4 ]4+ . Direct current (DC) magnetic susceptibility measurements revealed that there were ferromagnetic Tb-Tb interactions in [12 K4 ]4+ , whereas there was no indication of ferromagnetic interactions in [1]0 . Upon the formation of [12 K4 ]4+ from [1]0 and K+ ions, the temperature at which the magnetic hysteresis occurred increased from 7 to 15 K. In addition, the area of magnetic hysteresis became larger for [12 K4 ]4+ , meaning that SMM properties of [12 K4 ]4+ are superior to those of [1]0 . Alternating current (AC) magnetic measurements were used to confirm this observation. Magnetic relaxation times at 2 K increased 1000-fold upon dimerization of [1]0 to [12 K4 ]4+ , demonstrating the effectiveness of using K+ ions to induce dimer formation for the improvement of the SMM properties.
Inorganic Chemistry | 2015
Marko Damjanović; Yusuke Horie; Takaumi Morita; Yoji Horii; Keiichi Katoh; Masahiro Yamashita; Markus Enders
Synthesis of the anionic, α-substituted, bis(phthalocyaninato)Tb(III) complex [Tb(α-obPc)2](-) ([1](-)) (obPc = α-octabutoxyphthalocyaninato) leads to the isolation of its protonated form [1H](0). This complex was characterized by X-ray diffraction (XRD), mass spectroscopy (MS), infrared (IR) and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy. Crystal structure analysis did not allow localization of the additional proton, which is probably attached to the meso-N atom or isoindole-N atom of the phthalocyaninato ligand. [1H](0) can easily be deprotonated or protonated, giving the corresponding anionic and cationic complexes. The three compounds [1H](0), [1](-), and [1HH](+) were studied by a combination of paramagnetic NMR experiments ((1)H, (13)C, variable-temperature measurements, two-dimensional nuclear magnetic resonance and DFT calculations (done on Y(III) analogues with octamethoxyphthalocyaninato ligands), for the purpose of elucidating the positions of the acidic protons and for understanding the structural changes of the coordination environment of the Tb ion induced by protonation.
Inorganic Chemistry | 2017
Zhifu Liang; Marko Damjanović; Mritunjoy Kamila; Goulven Cosquer; Brian K. Breedlove; Markus Enders; Masahiro Yamashita
Two double-decker complexes with annulene ligands functionalized with indolenine groups were synthesized and characterized. The position of the proton acting as a counterion on one of the four indolenine nitrogen atoms was determined by using DFT calculations. Deprotonation and protonation of the complex induced by adding a base and an acid, respectively, were monitored by using NMR spectroscopy. Moreover, a correlation among the degree of protonation of the complex, the opening of the hysteresis, and the slow relaxation time is discussed.