Marko Novinec
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marko Novinec.
Biological Chemistry | 2013
Marko Novinec; Brigita Lenarčič
Abstract Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation.
Biomolecular Concepts | 2013
Marko Novinec; Brigita Lenarčič
Abstract Papain-like cysteine peptidases are a diverse family of peptidases found in most known organisms. In eukaryotes, they are divided into multiple evolutionary groups, which can be clearly distinguished on the basis of the structural characteristics of the proenzymes. Most of them are endopeptidases; some, however, evolved into exopeptidases by obtaining additional structural elements that restrict the binding of substrate into the active site. In humans, papain-like peptidases, also called cysteine cathepsins, act both as non-specific hydrolases and as specific processing enzymes. They are involved in numerous physiological processes, such as antigen presentation, extracellular matrix remodeling, and hormone processing. Their activity is tightly regulated and dysregulation of one or more cysteine cathepsins can result in severe pathological conditions, such as cardiovascular diseases and cancer. Other organisms can utilize papain-like peptidases for different purposes and they are often part of host-pathogen interactions. Numerous parasites, such as Plasmodium and flukes, utilize papain-like peptidases for host invasion, whereas plants, in contrast, use these enzymes for host defense. This review presents a state-of-the-art description of the structure and phylogeny of papain-like peptidases as well as an overview of their physiological and pathological functions in humans and in other organisms.
Protein Expression and Purification | 2012
Marko Novinec; Miha Pavšič; Brigita Lenarčič
Cysteine cathepsins are major players in numerous physiologic and pathologic processes and important drug targets. Several different expression systems have been developed for the production of these enzymes. Here we describe a novel, simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins. Recombinant procathepsin V was expressed in soluble form in the cytoplasm of Escherichia coli and purified in one step by immobilized nickel ion-affinity chromatography, yielding approximately 0.7 mg procathepsin V per liter bacterial culture. The recombinant proenzyme was then autocatalytically activated in vitro by incubation at pH 4.0 and 30 °C. The yield of proenzyme conversion was over 95% and the mature enzyme exhibited potent activity towards several commonly used synthetic substrates. The same protocol also proved successful in the production of several other cysteine procathepsins, such as cathepsin B, demonstrating that this procedure is widely applicable for the production of recombinant papain-like cysteine peptidases.
PLOS ONE | 2013
Marina Klemenčič; Marko Novinec; Silke Maier; Ursula Hartmann; Brigita Lenarčič
Secreted modular calcium-binding proteins 1 and 2 (SMOC-1 and SMOC-1) are extracellular calcium- binding proteins belonging to the BM-40 family of proteins. In this work we have identified a highly basic region in the extracellular calcium-binding (EC) domain of the SMOC-1 similar to other known glycosaminoglycan-binding motifs. Size-exclusion chromatography shows that full length SMOC-1 as well as its C-terminal EC domain alone bind heparin and heparan sulfate, but not the related chondroitin sulfate or dermatan sulfate glycosaminoglycans. Intrinsic tryptophan fluorescence measurements were used to quantify the binding of heparin to full length SMOC-1 and the EC domain alone. The calculated equilibrium dissociation constants were in the lower micromolar range. The binding site consists of two antiparallel alpha helices and mutagenesis experiments have shown that heparin-binding residues in both helices must be replaced in order to abolish heparin binding. Furthermore, we show that the SMOC-1 EC domain, like the SMOC-2 EC domain, supports the adhesion of epithelial HaCaT cells. Heparin-binding impaired mutants failed to support S1EC-mediated cell adhesion and together with the observation that S1EC in complex with soluble heparin attenuated cell adhesion we conclude that a functional and accessible S1EC heparin-binding site mediates adhesion of epithelial cells to SMOC-1.
Molecular Microbiology | 2015
Marina Klemenčič; Marko Novinec; Marko Dolinar
Caspases are a family of cysteine‐dependent proteases known to be involved in the process of programmed cell death in metazoans. Recently, cyanobacteria were also found to contain caspase‐like proteins, but their existence has only been identified in silico up to now. Here, we present the first experimental characterisation of a prokaryotic caspase homologue. We have expressed the putative caspase‐like gene MaOC1 from the toxic bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 in Escherichia coli. Kinetic characterisation showed that MaOC1 is an endopeptidase with a preference for arginine in the P1 position and a pH optimum of 7.5. MaOC1 exhibited high catalytic rates with the kcat/KM value for Z‐RR‐AMC substrate of the order 106 M−1 s−1. In contrast to plant or metazoan caspase‐like proteins, whose activity is calcium‐dependent or requires dimerisation for activation, MaOC1 was activated by autocatalytic processing after residue Arg219, which separated the catalytic domain and the remaining 55 kDa subunit. The Arg219Ala mutant was resistant to autoprocessing and exhibited no proteolytic activity, confirming that processing of MaOC1 is a prerequisite for its activity. Due to their structural and functional differences to other known caspase‐like proteins, we suggest to name these evolutionary primitive proteins orthocaspases.
Biochimica et Biophysica Acta | 2017
Melanie Paireder; Stefan Tholen; Andreas Porodko; Martin L. Biniossek; Bettina Mayer; Marko Novinec; Oliver Schilling; Lukas Mach
The tobacco-related plant Nicotiana benthamiana is gaining interest as a versatile host for the production of monoclonal antibodies and other protein therapeutics. However, the susceptibility of plant-derived recombinant proteins to endogenous proteolytic enzymes limits their use as biopharmaceuticals. We have now identified two previously uncharacterized N. benthamiana proteases with high antibody-degrading activity, the papain-like cysteine proteinases NbCysP6 and NbCysP7. Both enzymes are capable of hydrolysing a wide range of synthetic substrates, although only NbCysP6 tolerates basic amino acids in its specificity-determining S2 subsite. The overlapping substrate specificities of NbCysP6 and NbCysP7 are also documented by the closely related properties of their other subsites as deduced from the action of the enzymes on proteome-derived peptide libraries. Notable differences were observed to the substrate preferences of N. benthamiana cathepsin B, another antibody-degrading papain-like cysteine proteinase. The complementary activities of NbCysP6, NbCysP7 and N. benthamiana cathepsin B indicate synergistic roles of these proteases in the turnover of recombinant and endogenous proteins in planta, thus representing a paradigm for the shaping of plant proteomes by the combined action of papain-like cysteine proteinases.
ChemBioChem | 2012
Ana Torkar; Sarah Bregant; Laurent Devel; Marko Novinec; Brigita Lenarčič; Tamara T. Lah; Vincent Dive
Detecting the active forms of proteases by using activity‐based probes in complex proteomes has become an intensively investigated field of research over the past years because many pathogenic conditions involve alterations in protease activities. The detection of lysosomal cysteine proteases, the cathepsins, has mostly relied on the use of probes that incorporate reactive electrophilic moieties to modify a cysteine in the active site covalently. Here we report the first example of an activity‐based probe that targets the cathepsins and incorporates a photoactivatable benzophenone group for covalent labelling. When tested on a set of five cathepsins (B, K, L, S and V), this probe selectively labelled the active site of cathepsin L. Furthermore, when tested on crude cell extracts, the probe specifically detected cathepsin L quantities as low as a few picomoles. This study suggests that photoaffinity labelling is a promising approach for developing highly selective and useful cathepsin L probes. In particular, this probe might allow the detection of small amounts of the secreted active cathepsin L form in the cellular microenvironment in vitro and ex vivo.
Biochimica et Biophysica Acta | 2017
Vashendriya V.V. Hira; Urška Verbovšek; Barbara Breznik; Matic Srdič; Marko Novinec; Hala Kakar; Jill Wormer; Britt van der Swaan; Brigita Lenarčič; Luiz Juliano; Shwetal Mehta; Cornelis J. F. Van Noorden; Tamara T. Lah
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.
Archive | 2013
Antonio Baici; Marko Novinec; Brigita Lenarčič
This chapter is dedicated to reviewing, commenting and illustrating with examples kinetic tools that are essential to the study of peptidases interacting with their substrates, inhibitors and activators. Kinetic characterization starts with the measurement of the kinetic parameters for substrates using graphical and mathematical methods because this information is essential for further characterizing the action of modifiers. The bulk of the chapter is dedicated to the description of the properties and mechanisms of classical, tight binding and slow onset reversible inhibition, as well as to enzyme inactivation. The reader may notice that some beloved, ‘classical’ kinetic methods are not mentioned in this chapter. With all due respect for the past, we believe that modern methods, such as numerical integration of differential equations and robust statistical approaches, can reasonably replace less powerful investigation tools.
FEBS Letters | 2016
Marko Novinec; Mateja Rebernik; Brigita Lenarčič
The cysteine peptidase cathepsin K is a potent collagenolytic enzyme and a promising target for the treatment of osteoporosis. Here, we characterize its allosteric fine‐tuning via a recently identified allosteric site. We show that compound NSC94914 binds this site and acts as a specific partial inhibitor of the collagenolytic activity of cathepsin K. We link the functional differences between NSC94914 and known effectors (compound NSC11345 and glycosaminoglycans) to their different modes of interaction with the site. We characterize the allosteric site by site‐directed mutagenesis and show that it is involved in specific regulation of the collagenolytic activity of cathepsin K.