Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marko Sever is active.

Publication


Featured researches published by Marko Sever.


Current Pharmaceutical Design | 2010

Revised Robert's Cytoprotection and Adaptive Cytoprotection and Stable Gastric Pentadecapeptide BPC 157. Possible Significance and Implications for Novel Mediator.

Predrag Sikiric; Sven Seiwerth; Luka Brcic; Marko Sever; Robert Klicek; Bozo Radic; Domagoj Drmic; Spomenko Ilic; Danijela Kolenc

The significance of cytoprotection and adaptive cytoprotection and the peptides importance remained to be not completely determined. BPC 157 is an anti-ulcer peptidergic agent, proven in clinical trials to be both safe in inflammatory bowel disease (PL-10, PLD-116, PL 14736) and wound healing, and stable in human gastric juice, with no toxicity being reported. It has a prominent effect on alcohol- lesions (i.e., induced acutely and chronically) and non-steroidal anti-inflammatory drugs-lesions (while interestingly BPC 157 may both prevent and reverse adjuvant arthritis). To review the importance of BPC 157, this review focused on Roberts cytoprotection concept described in rat stomach, reviewing our evidence that may resolve whether the cytoprotection and adaptive cytoprotection is an uniform phenomenon or not; whether the phenomenon or phenomena are endogenous or not, depending on nature of the irritants (mild or strong); whether this may contribute to stomach mucosa defense either when threaten by various ulcerogens or afforded by various antiulcer agents; whether these phenomena are uniform in whole gastrointestinal tract or not; whether they are interrelated or not. Finally, the importance of the cytoprotection phenomena and cytoprotection activity for skin wound healing, and wound healing in general was challenged. Thereby, this review focused on BPC 157 role in cytoprotection and adaptative cytoprotection suggesting that it may be the essential endogenous mediator able to mediate both cytoprotective and adaptive cytoprotective response in stomach and the whole gastrointestinal tract with significant importance in wound healing as well.


Current Pharmaceutical Design | 2014

Stable gastric pentadecapeptide BPC 157-NO-system relation.

Predrag Sikiric; Sven Seiwerth; Rudolf Rucman; Branko Turkovic; Dinko Stancic Rokotov; Luka Brcic; Marko Sever; Robert Klicek; Bozo Radic; Domagoj Drmic; Spomenko Ilic; Danijela Kolenc; Gorana Aralica; Mirjana Stupnisek; Jelena Šuran; Ivan Barisic; Senka Dzidic; Hrvoje Vrcic; Bozidar Sebecic

We reviewed stable gastric pentadecapeptide BPC 157-NO-system-relation, its close participation in Moncadas (maintained vascular integrity, platelets control) homeostatic healing response of NO-system to injury. Namely, BPC 157s particular healing effect also affects all events after vascular integrity loss (dependent on circumstances, it reduces either thrombosis (abdominal aorta anastomosis) or bleeding/thrombocytopenia (amputation, heparin, warfarin, aspirin)) and in a series of different injurious models, acute and chronic, BPC 157 consistently advances healing after severe injuries in various tissues spontaneously unable to heal; stimulates egr-1 and naB2 genes; exhibits high safety (LD1 not achieved)). Hypothesis, that BPC 157 (since formed constitutively in the gastric mucosa, stable in human gastric juice, along with significance of NO-synthase and the basal formation of NO in stomach mucosa, greater than that seen in other tissues) exhibits a general, effective competing both with L-arginine analogues (i. e., L-NAME) and L-arginine, and that this has some physiologic importance (NO-generation), later, practically supports its beneficial effects illustrating BPC 157 and NOsystem mutual (with L-NAME/L-arginine; alone and together) relations in (i) gastric mucosa and mucosal protection, following alcohol lesions, in cytoprotection course, NO-generation, and blood pressure regulation; (ii) alcohol acute/chronic intoxication, and withdrawal; (iii) cardiovascular disturbances, chronic heart failure, pulmonary hypertension, and arrhythmias; (iv) disturbances after hypokalemia and hyperkalemia, and potassium-cell membrane dysfunction; and finally, in (v) complex healing failure, proved by the fistulas healing, colocutaneous and esophagocutaneous. However, how this advantage of modulating NO-system (i. e., particular effect on eNOS gene), may be practically translated into an enhanced clinical performance remains to be determined.


Current Pharmaceutical Design | 2011

Stable Gastric Pentadecapeptide BPC 157: Novel Therapy in Gastrointestinal Tract

Predrag Sikiric; Sven Seiwerth; Rudolf Rucman; Branko Turkovic; Dinko Stancic Rokotov; Luka Brcic; Marko Sever; Robert Klicek; Bozo Radic; Domagoj Drmic; Spomenko Ilic; Danijela Kolenc; Hrvoje Vrcic; Bozidar Sebecic

Stable gastric pentadecapeptide BPC 157 is an anti-ulcer peptidergic agent, safe in inflammatory bowel disease clinical trials (GEPPPGKPADDAGLV, M.W. 1419, PL 14736) and wound healing, stable in human gastric juice and has no reported toxicity. We focused on BPC 157 as a therapy in peridontitis, esophagus, stomach, duodenum, intestine, liver and pancreas lesions. Particularly, it has a prominent effect on alcohol-lesions (i.e., acute, chronic) and NSAIDs-lesions (interestingly, BPC 157 both prevents and reverses adjuvant arthritis). In rat esophagitis and failed function of both lower esophageal sphincter (LES) and pyloric sphincters (PS), BPC 157 increased pressure in both sphincters till normal and reduced esophagitis. However, in healthy rats, it may decrease (PS) or increase (LES) the pressure in sphincters. It has strong angiogenic potential, it acts protectively on endothelium, prevents and reverses thrombus formation after abdominal aorta anastomosis, affects many central disturbances (i.e., dopamine and 5-HT system), the NO-system (either L-arginine and L-NAME effects), endothelin, acts as a free radical scavenger (counteracting CCl4-, paracetamol-, diclofenac-injuries) and exhibits neuroprotective properties. BPC 157 successfully heals the intestinal anastomosis, gastrocutaneous, duodenocutaneous and colocutaneous fistulas in rats, as well as interacting with the NO-system. Interestingly, the fistula closure was achieved even when the BPC 157 therapy was postponed for one month. In short-bowel syndrome escalating throughout 4 weeks, the constant weight gain above preoperative values started immediately with peroral and parental BPC 157 therapy and the villus height, crypth depth and muscle thickness (inner (circular) muscular layer) additionally increased. Thus, BPC 157 may improve gastrointestinal tract therapy.


Life Sciences | 2011

Pentadecapeptide BPC 157 and its effects on a NSAID toxicity model : Diclofenac-induced gastrointestinal, liver, and encephalopathy lesions

Spomenko Ilic; Domagoj Drmic; Sandra Franjic; Danijela Kolenc; Marijana Ćorić; Luka Brcic; Robert Klicek; Bozo Radic; Marko Sever; Viktor Djuzel; Marinko Filipović; Zeljko Djakovic; Vasilije Stambolija; Alenka Boban Blagaic; Ivan Zoricic; Miroslav Gjurasin; Mirjana Stupnisek; Zeljko Romic; Kamelija Zarkovic; Senka Dzidic; Sven Seiwerth; Predrag Sikiric

AIMS We attempted to fully antagonize the extensive toxicity caused by NSAIDs (using diclofenac as a prototype). MAIN METHODS Herein, we used the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419), an anti-ulcer peptide shown to be efficient in inflammatory bowel disease clinical trials (PL 14736) and various wound treatments with no toxicity reported. This peptide was given to antagonize combined gastrointestinal, liver, and brain toxicity induced by diclofenac (12.5mg/kg intraperitoneally, once daily for 3 days) in rats. KEY FINDINGS Already considered a drug that can reverse the toxic side effects of NSAIDs, BPC 157 (10 μg/kg, 10 ng/kg) was strongly effective throughout the entire experiment when given (i) intraperitoneally immediately after diclofenac or (ii) per-orally in drinking water (0.16 μg/mL, 0.16 ng/mL). Without BPC 157 treatment, at 3h following the last diclofenac challenge, we encountered a complex deleterious circuit of diclofenac toxicity characterized by severe gastric, intestinal and liver lesions, increased bilirubin, aspartate transaminase (AST), alanine transaminase (ALT) serum values, increased liver weight, prolonged sedation/unconsciousness (after any diclofenac challenge) and finally hepatic encephalopathy (brain edema particularly located in the cerebral cortex and cerebellum, more in white than in gray matter, damaged red neurons, particularly in the cerebral cortex and cerebellar nuclei, Purkinje cells and less commonly in the hippocampal neurons). SIGNIFICANCE The very extensive antagonization of diclofenac toxicity achieved with BPC 157 (μg-/ng-regimen, intraperitoneally, per-orally) may encourage its further use as a therapy to counteract diclofenac- and other NSAID-induced toxicity.


Surgery Today | 2007

Stable gastric pentadecapeptide BPC 157 in trials for inflammatory bowel disease (PL-10, PLD-116, PL14736, Pliva, Croatia) heals ileoileal anastomosis in the rat.

Tihomir Vuksic; Ivan Zoricic; Luka Brcic; Marko Sever; Robert Klicek; Bozo Radic; Vedran Cesarec; Lidija Berkopić; Neike Keller; Alenka Boban Blagaic; Neven Kokić; Ivan Jelić; Juraj Geber; Tomislav Anic; Sven Seiwerth; Predrag Sikiric

PurposeGastric pentadecapeptide BPC 157 (BPC 157), which has been shown to be safe in clinical trials for inflammatory bowel disease (PL-10, PLD-116, PL14736, Pliva, Croatia), may be able to cure intestinal anastomosis dehiscence. This antiulcer peptide shows no toxicity, is limit test negative, and a lethal dose is not achieved. It is stable in human gastric juice. In comparison with other standard treatments it is more effective for ulcers and various wounds, and can be used without a carrier needed for other peptides, both locally and systemically (i.e., perorally, parenterally). We studied the effectiveness of BPC 157 for ileoileal anastomosis healing in rats.MethodsWe assessed ileoileal anastomosis dehiscence macroscopically, histologically, and biomechanically (volume [ml] infused through a syringe-perfusion pump system (1 ml/10 s), and pressure [mmHg] to leak induction [catheter connected to a chamber and a monitor, at 10 cm proximal to anastomosis]), at 1, 2, 3, 4, 5, 6, 7, and 14 days. BPC 157 (10 µg, 10 ng, 10 pg/kg i.p. (or saline [5 ml/kg]) was first administered after surgery, while it was last given 24 h before either assessment or sacrifice.ResultsThroughout the experiment, both higher doses of BPC 157 were shown to improve all parameters of anastomotic wound healing. The formation of adhesions remained slight, the blood vessels were filled with blood, and a mild intestinal passage obstruction was only temporarily observed. Anastomosis without leakage induces markedly higher volume and pressure values, with a continuous increase toward healthy values. From day 1, edema was markedly attenuated and the number of granulocytes decreased, while from days 4 or 5 necrosis decreased and granulation tissue, reticulin, and collagen formation substantially increased, thus resulting in increased epithelization.ConclusionThis study showed BPC 157 to have a beneficial effect on ileoileal anastomosis healing in the rat.


Current Pharmaceutical Design | 2012

Toxicity by NSAIDs. Counteraction by stable gastric pentadecapeptide BPC 157

Predrag Sikiric; Sven Seiwerth; Rudolf Rucman; Branko Turkovic; Dinko Stancic Rokotov; Luka Brcic; Marko Sever; Robert Klicek; Bozo Radic; Domagoj Drmic; Spomenko Ilic; Danijela Kolenc; Gorana Aralica; Hana Safic; Jelena Šuran; Davor Rak; Senka Dzidic; Hrvoje Vrcic; Bozidar Sebecic

Stable gastric pentadecapeptide BPC 157 is an anti-ulcer peptidergic agent, proven in clinical trials to be both safe in inflammatory bowel disease (PL-10, PLD-116, PL 14736) and wound healing, stable in human gastric juice, with no toxicity being reported. Recently, we claim that BPC 157 may be used as an antidote against NSAIDs. We focused on BPC 157 beneficial effects on stomach, duodenum, intestine, liver and brain injuries, adjuvant arthritis, pain, hyper/hypothermia, obstructive thrombus formation and thrombolysis, blood vessel function, counteraction of prolonged bleeding and thrombocytopenia after application of various anticoagulants and antiplatelet agents and wound healing improvement. The arguments for BPC 157 antidote activity (i.e., the role of BPC 157 in cytoprotection, being a novel mediator of Roberts cytoprotection and BPC 157 beneficial effects on NSAIDs mediated lesions in the gastrointestinal tract, liver and brain and finally, counteraction of aspirin-induced prolonged bleeding and thrombocytopenia) obviously have a counteracting effect on several established side-effects of NSAIDs use. The mentioned variety of the beneficial effects portrayed by BPC 157 may well be a foundation for establishing BPC 157 as a NSAIDs antidote since no other single agent has portrayed a similar array of effects. Unlike NSAIDs, a very high safety (no reported toxicity (LD1 could be not achieved)) profile is reported for BPC 157. Also, unlike the different dosage levels of aspirin, as a NSAIDs prototype, which differ by a factor of about ten, all these beneficial and counteracting effects of BPC 157 were obtained using the equipotent dosage (μg, ng/kg) in parenteral or peroral regimens.


Regulatory Peptides | 2013

Mortal hyperkalemia disturbances in rats are NO-system related. The life saving effect of pentadecapeptide BPC 157

Ivan Barisic; Diana Balenović; Robert Klicek; Bozo Radic; Bojana Nikitović; Domagoj Drmic; Mario Udovicic; Dean Strinic; Darija Bardak; Lidija Berkopić; Viktor Djuzel; Marko Sever; Ivan Cvjetko; Zeljko Romic; Aleksandra Sindic; Martina Lovrić Benčić; Sven Seiwerth; Predrag Sikiric

We demonstrate the full counteracting ability of stable gastric pentadecapeptide BPC 157 against KCl-overdose (intraperitoneal (i), intragastric (ii), in vitro (iii)), NO-system related. (i) We demonstrated potential (/kg) of: BPC 157 (10ng, 10μg ip, complete counteraction), l-arginine (100mg ip, attenuation) vs. L-NAME (5mg ip, deadly aggravation), given alone and/or combined, before or after intraperitoneal KCl-solution application (9mEq/kg). Therapy was confronted with promptly unrelenting hyperkalemia (>12mmol/L), arrhythmias (and muscular weakness, hypertension, low pressure in lower esophageal and pyloric sphincter) with an ultimate and a regularly inevitable lethal outcome within 30min. Previously, we established BPC 157-NO-system interaction; now, a huge life-saving potential. Given 30min before KCl, all BPC 157 regimens regained sinus rhythm, had less prolongation of QRS, and had no asystolic pause. BPC 157 therapy, given 10min after KCl-application, starts the rescue within 5-10min, completely restoring normal sinus rhythm at 1h. Likewise, other hyperkalemia-disturbances (muscular weakness, hypertension, low sphincteric pressure) were also counteracted. Accordingly with NO-system relation, deadly aggravation by L-NAME: l-arginine brings the values to the control levels while BPC 157 always completely nullified lesions, markedly below those of controls. Combined with l-arginine, BPC 157 exhibited no additive effect. (ii) Intragastric KCl-solution application (27mEq/kg) - (hyperkalemia 7mmol/L): severe stomach mucosal lesions, sphincter failure and peaked T waves were fully counteracted by intragastric BPC 157 (10ng, 10μg) application, given 30min before or 10min after KCl. (iii). In HEK293 cells, hyperkalemic conditions (18.6mM potassium concentrations), BPC 157 directly affects potassium conductance, counteracting the effect on membrane potential and depolarizations caused by hyperkalemic conditions.


European Journal of Pharmacology | 2016

Stable gastric pentadecapeptide BPC 157 heals rat colovesical fistula

Tihomir Grgic; Dora Grgic; Domagoj Drmic; Anita Zenko Sever; Igor Petrovic; Mario Sucic; Antonio Kokot; Robert Klicek; Marko Sever; Sven Seiwerth; Predrag Sikiric

To establish the effects of BPC 157 on the healing of rat colovesical fistulas, Wistar Albino male rats were randomly assigned to different groups. BPC 157, a stable gastric pentadecapeptide, has been used in clinical applications-specifically, in ulcerative colitis-and was successful in treating both external and internal fistulas. BPC 157 was provided daily, perorally, in drinking water (10µg/kg, 12ml/rat/day) until sacrifice or, alternatively, 10µg/kg or 10ng/kg intraperitoneally, with the first application at 30min after surgery and the last at 24h before sacrifice. Controls simultaneously received an equivolume of saline (5.0ml/kg ip) or water only (12ml/rat/day). Assessment (i.e., colon and vesical defects, fistula leaking, fecaluria and defecation through the fistula, adhesions and intestinal obstruction as healing processes) took place on days 7, 14 and 28. Control colovesical fistulas regularly exhibited poor healing, with both of the defects persisting; continuous fistula leakage; fecaluria and defecation through the fistula; advanced adhesion formation; and intestinal obstruction. By contrast, BPC 157 given perorally or intraperitoneally and in µg- and ng-regimens rapidly improved the whole presentation, with both colon and vesical defects simultaneously ameliorated and eventually healed. The maximal instilled volume was continuously raised until it reached the values of healthy rats, there were no signs of fecaluria and no defecation through the fistula, there was counteraction of advanced adhesion formation or there was an intestinal obstruction. In conclusion, BPC 157 effects appear to be suited to inducing full healing of colocutaneous fistulas in rats.


PLOS ONE | 2016

Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats

Nermin Lojo; Žarko Rašić; Anita Zenko Sever; Danijela Kolenc; Darko Vukušić; Domagoj Drmic; Ivan Zoricic; Marko Sever; Sven Seiwerth; Predrag Sikiric

Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and L-NAME. BPC 157 completely ameliorated symptoms in massive intestinal resection-, massive intestinal resection plus diclofenac-, and massive intestinal resection plus diclofenac plus L-NAME-treated short bowel rats that presented with cyclooxygenase (COX)-NO-system inhibition. L-arginine ameliorated only L-NAME-induced aggravation of symptoms in rats subjected to massive intestinal resection and administered diclofenac plus L-NAME.


Life Sciences | 2016

Stable gastric pentadecapeptide BPC 157 heals rectovaginal fistula in rats

Marko Baric; Anita Zenko Sever; Lovorka Batelja Vuletic; Zarko Rasic; Marko Sever; Domagoj Drmic; Tatjana Pavelic-Turudic; Mario Sucic; Hrvoje Vrcic; Sven Seiwerth; Predrag Sikiric

AIM Rectovaginal fistula is a devastating condition providing more than 99% of patients for surgical treatment. We hypothesized that rectovaginal fistula may be healed by therapy with stable gastric pentadecapeptide BPC 157, in consistence with its initial clinical application and effect on external fistulas. MAIN METHODS BPC 157 (10μg/kg or 10ng/kg) was given perorally, in drinking water (0.16μg/ml or 0.16ng/ml, 12ml/rat/day) till sacrifice, or alternatively, intraperitoneally, first application at 30min after surgery, last at 24h before sacrifice. Controls simultaneously received an equivolume of saline (5.0ml/kg ip) or water only (12ml/rat/day). The assessment (i.e., rectal and vaginal defect, fistula leakage, defecation through the fistula, adhesions and intestinal obstruction as healing processes) was at day 1, 3, 5, 7, 10, 14 and 21. KEY FINDINGS Regularly, rectovaginal fistulas exhibited poor healing, with both of the defects persisting, continuous fistula leakage, defecation through the fistula, advanced adhesion formation and intestinal obstruction. By contrast, BPC 157 given perorally or intraperitoneally, in μg- and ng-regimens rapidly improved the whole presentation, with both rectal and vaginal defects simultaneously ameliorated and eventually healed. The maximal instilled volume was continuously raised till the values of healthy rats were achieved, there were no signs of defecation through the fistula. A counteraction of advanced adhesion formation and intestinal obstruction was achieved. Microscopic improvement was along with macroscopic findings. SIGNIFICANCE BPC 157 effects appear to be suited to induce a full healing of rectovaginal fistulas in rats.

Collaboration


Dive into the Marko Sever's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge