Marko Storch
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marko Storch.
Nature Reviews Molecular Cell Biology | 2015
Arturo Casini; Marko Storch; Geoffrey S. Baldwin; Tom Ellis
DNA assembly is a key part of constructing gene expression systems and even whole chromosomes. In the past decade, a plethora of powerful new DNA assembly methods — including Gibson Assembly, Golden Gate and ligase cycling reaction (LCR) — have been developed. In this Innovation article, we discuss these methods as well as standards such as the modular cloning (MoClo) system, GoldenBraid, modular overlap-directed assembly with linkers (MODAL) and PaperClip, which have been developed to facilitate a streamlined assembly workflow, to aid the exchange of material between research groups and to create modular reusable DNA parts.
Molecular Biology of the Cell | 2012
Per O. Widlund; Marija Podolski; Simone Reber; Joshua Alper; Marko Storch; Anthony A. Hyman; Jonathon Howard; David Drechsel
A method is presented that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. It eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.
PLOS ONE | 2011
Monika I. Mayr; Marko Storch; Jonathon Howard; Thomas U. Mayer
Background Members of the kinesin-8 subfamily are plus end-directed molecular motors that accumulate at the plus-ends of kinetochore-microtubules (kt-MTs) where they regulate MT dynamics. Loss of vertebrate kinesin-8 function induces hyperstable MTs and elongated mitotic spindles accompanied by severe chromosome congression defects. It has been reported that the motility of human kinesin-8, Kif18A, is required for its accumulation at the plus tips of kt-MTs. Methodology/Findings Here, we investigate how Kif18A localizes to the plus-ends of kt-MTs. We find that Kif18A lacking its C-terminus does not accumulate on the tips of kt-MTs and fails to fulfill its mitotic function. In vitro studies reveal that Kif18A possesses a non-motor MT binding site located within its C-proximal 121 residues. Using single molecule measurements we find that Kif18A is a highly processive motor and, furthermore, that the C-terminal tail is essential for the high processivity of Kif18A. Conclusion/Significance These results show that Kif18A like its yeast orthologue is a highly processive motor. The ability of Kif18A to walk on MTs for a long distance without dissociating depends on a non-motor MT binding site located at the C-terminus of Kif18A. This C-proximal tail of Kif18A is essential for its plus-end accumulation and mitotic function. These findings advance our understanding of how Kif18A accumulates at the tips of kt-MTs to fulfill its function in mitosis.
ACS Synthetic Biology | 2015
Marko Storch; Arturo Casini; Ben Mackrow; Toni Fleming; Harry Trewhitt; Tom Ellis; Geoff S. Baldwin
The ability to quickly and reliably assemble DNA constructs is one of the key enabling technologies for synthetic biology. Here we define a new Biopart Assembly Standard for Idempotent Cloning (BASIC), which exploits the principle of orthogonal linker based DNA assembly to define a new physical standard for DNA parts. Further, we demonstrate a new robust method for assembly, based on type IIs restriction enzyme cleavage and ligation of oligonucleotides with single stranded overhangs that determine the assembly order. It allows for efficient, parallel assembly with great accuracy: 4 part assemblies achieved 93% accuracy with single antibiotic selection and 99.7% accuracy with double antibiotic selection, while 7 part assemblies achieved 90% accuracy with double antibiotic selection. The linkers themselves may also be used as composable parts for RBS tuning or the creation of fusion proteins. The standard has one forbidden restriction site and provides for an idempotent, single tier organization, allowing all parts and composite constructs to be maintained in the same format. This makes the BASIC standard conceptually simple at both the design and experimental levels.
Biophysical Journal | 2013
Anita Jannasch; Volker Bormuth; Marko Storch; Jonathon Howard; Erik Schäffer
During the cell cycle, kinesin-8s control the length of microtubules by interacting with their plus ends. To reach these ends, the motors have to be able to take many steps without dissociating. However, the underlying mechanism for this high processivity and how stepping is affected by force are unclear. Here, we tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads using optical tweezers. Surprisingly, both kinesin-8 motors were much weaker compared with other kinesins. Furthermore, we discovered a force-induced stick-slip motion: the motor frequently slipped, recovered from this state, and then resumed normal stepping motility without detaching from the microtubule. The low forces are consistent with kinesin-8s being regulators of microtubule dynamics rather than cargo transporters. The weakly bound slip state, reminiscent of a molecular safety leash, may be an adaptation for high processivity.
Biophysical Journal | 2012
Volker Bormuth; Bert Nitzsche; Felix Ruhnow; Aniruddha Mitra; Marko Storch; Burkhard Rammner; Jonathon Howard; Stefan Diez
Kinesin-1 motor proteins walk parallel to the protofilament axes of microtubules as they step from one tubulin dimer to the next. Is protofilament tracking an inherent property of processive kinesin motors, like kinesin-1, and what are the structural determinants underlying protofilament tracking? To address these questions, we investigated the tracking properties of the processive kinesin-8, Kip3. Using in vitro gliding motility assays, we found that Kip3 rotates microtubules counterclockwise around their longitudinal axes with periodicities of ∼1 μm. These rotations indicate that the motors switch protofilaments with a bias toward the left. Molecular modeling suggests 1), that the protofilament switching may be due to kinesin-8 having a longer neck linker than kinesin-1, and 2), that the leftward bias is due the asymmetric geometry of the motor neck linker complex.
eLife | 2015
Anneke Hibbel; Aliona Bogdanova; Mohammed Mahamdeh; Anita Jannasch; Marko Storch; Erik Schäffer; Dimitris Liakopoulos; Jonathon Howard
The size and position of mitotic spindles is determined by the lengths of their constituent microtubules. Regulation of microtubule length requires feedback to set the balance between growth and shrinkage. Whereas negative feedback mechanisms for microtubule length control, based on depolymerizing kinesins and severing proteins, have been studied extensively, positive feedback mechanisms are not known. Here, we report that the budding yeast kinesin Kip2 is a microtubule polymerase and catastrophe inhibitor in vitro that uses its processive motor activity as part of a feedback loop to further promote microtubule growth. Positive feedback arises because longer microtubules bind more motors, which walk to the ends where they reinforce growth and inhibit catastrophe. We propose that positive feedback, common in biochemical pathways to switch between signaling states, can also be used in a mechanical signaling pathway to switch between structural states, in this case between short and long polymers. DOI: http://dx.doi.org/10.7554/eLife.10542.001
PLOS ONE | 2018
Jacob Beal; Traci Haddock-Angelli; Geoff S. Baldwin; Markus Gershater; Ari Dwijayanti; Marko Storch; Kim de Mora; Meagan Lizarazo; Randy Rettberg
Fluorescent reporters are commonly used to quantify activities or properties of both natural and engineered cells. Fluorescence is still typically reported only in arbitrary or normalized units, however, rather than in units defined using an independent calibrant, which is problematic for scientific reproducibility and even more so when it comes to effective engineering. In this paper, we report an interlaboratory study showing that simple, low-cost unit calibration protocols can remedy this situation, producing comparable units and dramatic improvements in precision over both arbitrary and normalized units. Participants at 92 institutions around the world measured fluorescence from E. coli transformed with three engineered test plasmids, plus positive and negative controls, using simple, low-cost unit calibration protocols designed for use with a plate reader and/or flow cytometer. In addition to providing comparable units, use of an independent calibrant allows quantitative use of positive and negative controls to identify likely instances of protocol failure. The use of independent calibrants thus allows order of magnitude improvements in precision, narrowing the 95% confidence interval of measurements in our study up to 600-fold compared to normalized units.
Methods of Molecular Biology | 2017
Marko Storch; Arturo Casini; Ben Mackrow; Tom Ellis; Geoff S. Baldwin
Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].
Biophysical Journal | 2012
Anita Jannasch; Marko Storch; Jonathon Howard; Erik Schäffer