Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Alter is active.

Publication


Featured researches published by Markus Alter.


Kidney & Blood Pressure Research | 2012

Renal and Cardiac Effects of DPP‑4 Inhibitors - from Preclinical Development to Clinical Research

Berthold Hocher; Christoph Reichetzeder; Markus Alter

Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined Phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal Phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials – beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure.


Kidney & Blood Pressure Research | 2012

DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy

Markus Alter; Ina M. Ott; Karoline von Websky; Oleg Tsuprykov; Yuliya Sharkovska; Katharina Krause-Relle; Jens Raila; Andrea Henze; Thomas Klein; Berthold Hocher

Background: The need for an improved treatment for diabetic nephropathy is greatest in patients who do not adequately respond to angiotensin II receptor blockers (ARBs). This study investigated the effect of the novel dipeptidyl peptidase-4 inhibitor linagliptin alone and in combination with the ARB telmisartan on the progression of diabetic nephropathy in diabetic endothelial nitric oxide synthase (eNOS) knockout mice. Methods: Sixty male eNOS knockout C57BL/6J mice were divided into four groups after receiving intraperitoneal highdose streptozotocin: telmisartan (1 mg/kg), linagliptin (3 mg/kg), linagliptin + telmisartan (3 mg/kg + 1 mg/kg) and vehicle. Fourteen mice were used as non-diabetic controls. Results: After 12 weeks, urine and blood were obtained and blood pressure measured. Glucose concentrations were increased and similar in all diabetic groups. Telmisartan alone reduced systolic blood pressure by 5.9 mmHg versus diabetic controls (111.2 ± 2.3 mmHg vs 117.1 ± 2.2 mmHg; mean ± SEM; P=0.071). Combined treatment significantly reduced albuminuria compared with diabetic controls (71.7 ± 15.3 µg/24 h vs 170.8 ± 34.2 µg/24 h; P=0.017), whereas the effects of single treatment with either telmisartan (97.8 ± 26.4 µg/24 h) or linagliptin (120.8 ± 37.7 µg/24 h) were not statistically significant. DPP-4 inhibition, alone and in combination, led to significantly lower plasma osteopontin levels compared with telmisartan alone. Histological analysis revealed reduced glomerulosclerosis after Linagliptin alone and in combination with telmisartan in comparison to non treated diabetic animals (p<0.01 and p<0.05). Kidney malonaldehyde immune-reactivity, a marker of oxidative stress, was significantly lower in animals treated with linagliptin. Conclusions: DPP-4 inhibition on top of ARB treatment significantly reduced urinary albumin excretion and oxidative stress in diabetic eNOS knockout mice. Linagliptin on top of an angiotensin II receptor blocker may offer a new therapeutic approach for patients with diabetic nephropathy.


PLOS ONE | 2011

Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy

Lyubov Chaykovska; Karoline von Websky; Jan Rahnenführer; Markus Alter; Susi Heiden; Holger Fuchs; Frank Runge; Thomas Klein; Berthold Hocher

Background Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4). Methodology/Principal Findings In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin. Conclusions/Significance DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.


Journal of Hypertension | 2014

Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy

Yuliya Sharkovska; Christoph Reichetzeder; Markus Alter; Oleg Tsuprykov; S. Bachmann; Thomas Secher; Thomas Klein; Berthold Hocher

Background: Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. Method: This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of renin–angiotensin system blockade by enalapril. Ten-week-old male diabetic db/db mice were treated for 3 months with either vehicle (n = 10), 3 mg linagliptin/kg per day (n = 8), or 20 mg enalapril/kg per day (n = 10). Heterozygous db/m mice treated with vehicle served as healthy controls (n = 8). Results: Neither linagliptin nor enalapril had significant effects on the parameters of glucose metabolism or blood pressure in diabetic db/db mice. However, linagliptin treatment reduced albuminuria and attenuated kidney injury. In addition, expression of podocyte marker podocalyxin was normalized. We also analysed DPP-4 expression by immunofluorescence in human kidney biopsies and detected upregulation of DPP-4 in the glomeruli of patients with diabetic nephropathy, suggesting that our findings might be of relevance for human kidney disease as well. Conclusion: Treatment with DPP-4 inhibitor linagliptin delays the progression of diabetic nephropathy damage in a glucose-independent and blood-pressure-independent manner. The observed effects may be because of the attenuation of podocyte injury and inhibition of myofibroblast transformation.


Journal of Hypertension | 2013

Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension.

Lyubov Chaykovska; Markus Alter; von Websky K; Hohmann M; Oleg Tsuprykov; Christoph Reichetzeder; Kutil B; Kraft R; Thomas Klein; Berthold Hocher

Objective: To investigate the effects of linagliptin alone and in combination with the angiotensin II receptor blocker (ARB), telmisartan on blood pressure (BP), kidney function, heart morphology and oxidative stress in rats with renovascular hypertension. Methods: Fifty-seven male Wistar rats underwent unilateral surgical stenosis of the renal artery [2-kidney-1-clip (2k1c) method]. Animals were randomly divided into four treatment groups (n = 14–18 per group) receiving: telmisartan (10 mg/kg per day in drinking water), linagliptin (89 ppm in chow), combination (linagliptin 89 ppm + telmisartan 10 mg/kg per day) or placebo. An additional group of 12 rats underwent sham surgery. BP was measured one week after surgery. Hypertensive animals entered a 16-week dosing period. BP was measured 2, 4, 8, 12 and 16 weeks after the initiation of treatment. Blood and urine were tested for assessment of kidney function and oxidative stress 6, 10, 14 and 18 weeks after surgery. Blood and urine sampling and organ harvesting were finally performed. Results: Renal stenosis caused an increase in mean ± SD systolic BP as compared with the sham group (157.7 ± 29.3 vs. 106.2 ± 20.5 mmHg, respectively; P < 0.001). Telmisartan alone and in combination with linagliptin, normalized SBP (111.1 ± 24.3 mmHg and 100.4 ± 13.9 mmHg, respectively; P < 0.001 vs. placebo). Telmisartan alone and in combination with linagliptin significantly prevented cardiac hypertrophy, measured by heart weight and myocyte diameter. Renal function measured by cystatin C was not affected by 2k1c surgery. Telmisartan significantly increased plasma concentration of cystatin C. 2k1c surgery initiated fibrosis in both kidneys. Telmisartan promoted further fibrotic changes in the clipped kidney, as measured by protein expression of Col1a1 and histology for interstitial fibrosis and glomerulosclerosis. In non-clipped kidneys, telmisartan demonstrated antifibrotic properties, reducing Col1a1 protein expression. Plasma levels of oxidized low-density lipoprotein were higher in the placebo-treated 2k1c rats as compared to sham-operated animals. The increase was abolished by linagliptin alone (P = 0.03 vs. placebo) and in combination with telmisartan (P = 0.02 vs. placebo). Combination therapy also significantly reduced plasma concentration of carbonyl proteins (P = 0.04 vs. placebo). Conclusion: Inhibition of type 4 dipeptidyl peptidase with linagliptin did not counter BP-lowering effects of ARB in 2k1c rats. Linagliptin reduced lipid and protein oxidation in 2k1c rats, and this effect was BP-independent.


Hypertension | 2011

Endothelin-Converting Enzyme/Neutral Endopeptidase Inhibitor SLV338 Prevents Hypertensive Cardiac Remodeling in a Blood Pressure–Independent Manner

Philipp Kalk; Yuliya Sharkovska; Elena Kashina; Karoline von Websky; Katharina Relle; Thiemo Pfab; Markus Alter; Philippe Guillaume; Daniel Provost; Katrin Hoffmann; Yvan Fischer; Berthold Hocher

Hypertensive heart disease is a major contributor to cardiovascular mortality. Endothelin is a potent vasoconstrictive and profibrotic mediator produced by the endothelin-converting enzyme (ECE), whereas natriuretic peptides, degraded by the neutral endopeptidase (NEP), have diuretic, vasodilatory, and antifibrotic properties. Thus, combined ECE/NEP inhibition may halt hypertensive cardiac remodeling. This study examined effects of SLV338, a novel ECE/NEP inhibitor, on cardiac protection in experimental renovascular hypertension (2-kidney, 1-clip [2K1C]). Male rats were allocated to 5 groups: sham-operated rats, untreated animals with 2K1C, 2K1C animals treated with oral SLV338 (30 and 100 mg/kg per day), and 2K1C animals treated with oral losartan (20 mg/kg per day). Treatment duration was 12 weeks. Blood pressure was assessed every 4 weeks. At study end, hearts were taken for histology/computer-aided histomorphometry/immunohistochemistry. Pharmacological properties of SLV338 are described. SLV338 is a dual ECE/NEP inhibitor, as demonstrated both in vitro and in vivo. In the 2K1C study, losartan lowered blood pressure by ⩽46 mm Hg, whereas both dosages of SLV338 had no effect. However, SLV338 (both dosages) completely normalized cardiac interstitial fibrosis, perivascular fibrosis, myocyte diameter, and media:lumen ratio of cardiac arteries, as did losartan. Cardiac transforming growth factor-&bgr;1 expression was significantly enhanced in untreated 2K1C rats versus controls, whereas treatment with SLV338 and losartan prevented this effect. Taken together, dual ECE/NEP inhibitor SLV338 prevents cardiac remodeling to the same extent as losartan, but in a blood pressure–independent manner, in a rat model of renovascular hypertension. This effect is at least partially mediated via suppression of cardiac transforming growth factor-&bgr;1 expression.


Kidney International | 2016

The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy

Oleg Tsuprykov; Ryotaro Ando; Christoph Reichetzeder; Karoline von Websky; Viktoriia Antonenko; Yuliya Sharkovska; Lyubov Chaykovska; Jan Rahnenführer; Ahmed Abdallah Hasan; Harald Tammen; Markus Alter; Thomas Klein; Seiji Ueda; Sho-ichi Yamagishi; Seiya Okuda; Berthold Hocher

Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different.


PLOS ONE | 2012

Effects of stimulation of soluble guanylate cyclase on diabetic nephropathy in diabetic eNOS knockout mice on top of angiotensin II receptor blockade.

Ina M. Ott; Markus Alter; Karoline von Websky; Axel Kretschmer; Oleg Tsuprykov; Yuliya Sharkovska; Katharina Krause-Relle; Jens Raila; Andrea Henze; Johannes Peter Stasch; Berthold Hocher

The prevalence of diabetes mellitus and its complications, such as diabetic nephropathy (DN), is rising worldwide and prevention and treatment are therefore becoming increasingly important. Therapy of DN is particularly important for patients who do not adequately respond to angiotensin receptor blocker (ARB) treatment. Novel approaches include the stimulation of soluble guanylate cyclase (sGC) as it is reported to have beneficial effects on cardiac and renal damage. We aimed to investigate the effects of the sGC stimulator riociguat and ARB telmisartan on kidney function and structure in a hypertensive model of diabetic nephropathy. Seventy-six diabetic male eNOS knockout C57BL/6J mice were randomly divided after having received streptozotocin: telmisartan (1 mg/kg/d), riociguat (3 mg/kg/d), riociguat+telmisartan (3+1 mg/kg/d), and vehicle. Fourteen mice were used as non-diabetic controls. Treatment duration was 11 weeks. Glucose concentrations were increased and similar in all diabetic groups. Telmisartan insignificantly reduced blood pressure by 5.9 mmHg compared with diabetic controls (111.2±2.3 mmHg vs. 117.1±2.2 mmHg; p = 0.071). Treatment with riociguat both alone and in combination with telmisartan led to a significant reduction of blood pressure towards diabetic vehicle (105.2±2.5 mmHg and 105.0±3.2 mmHg, respectively, vs. 117.1±2.2 mmHg). Combined treatment also significantly decreased albuminuria compared with diabetic controls (47.3±9.6 µg/24 h vs. 170.8±34.2 µg/24 h; p = 0.002) reaching levels similar to those of non-diabetic controls (34.4±10.6 µg/24 h), whereas the reduction by single treatment with either telmisartan (97.8±26.4 µg/24 h) or riociguat (97.1±15.7 µg/24 h) was not statistically significant. The combination treatment led to a significant (p<0.01) decrease of tissue immunoreactivity of malondialdehyde, as consequence of reduced oxidative stress. In conclusion, stimulation of sGC significantly reduced urinary albumin excretion in diabetic eNOS knockout mice treated already with ARB. Thus, this new drug class on top of standard ARBs administration may offer a new therapeutic approach for patients resistant to ARB treatment.


Journal of Hypertension | 2011

Endothelin-1 overexpression restores diastolic function in eNOS knockout mice.

Nicolas Vignon-Zellweger; Katharina Relle; Elodie Kienlen; Markus Alter; Patrick Seider; Juliya Sharkovska; Susi Heiden; Philipp Kalk; Karima Schwab; Barbara Albrecht-Küpper; Franz Theuring; Johannes-Peter Stasch; Berthold Hocher

Background The cardiac nitric oxide and endothelin-1 (ET-1) systems are closely linked and play a critical role in cardiac physiology. The balance between both systems is often disturbed in cardiovascular diseases. To define the cardiac effect of excessive ET-1 in a status of nitric oxide deficiency, we compared left ventricular function and morphology in wild-type mice, ET-1 transgenic (ET+/+) mice, endothelial nitric oxide synthase knockout (eNOS−/−) mice, and ET+/+eNOS−/− mice. Methods and results eNOS−/− and ET+/+eNOS−/− mice developed high blood pressure compared with wild-type and ET+/+ mice. Left ventricular catheterization showed that eNOS−/− mice, but not ET+/+eNOS−/−, developed diastolic dysfunction characterized by increased end-diastolic pressure and relaxation constant tau. To elucidate the causal molecular mechanisms driving the rescue of diastolic function in ET+/+eNOS−/− mice, the cardiac proteome was analyzed. Two-dimensional gel electrophoresis coupled to mass spectrometry offers an appropriate hypothesis-free approach. ET-1 overexpression on an eNOS−/− background led to an elevated abundance and change in posttranslational state of antioxidant enzymes (e.g., peroxiredoxin-6, glutathione S-transferase mu 2, and heat shock protein beta 7). In contrast to ET+/+eNOS−/− mice, eNOS−/− mice showed an elevated abundance of proteins responsible for sarcomere disassembly (e.g., cofilin-1 and cofilin-2). In ET+/+eNOS−/− mice, glycolysis was favored at the expense of fatty acid oxidation. Conclusion eNOS−/− mice developed diastolic dysfunction; this was rescued by ET-1 transgenic overexpression. This study furthermore suggests that cardiac ET-1 overexpression in case of eNOS deficiency causes specifically the regulation of proteins playing a role in oxidative stress, myocytes contractility, and energy metabolism.


Journal of Hypertension | 2010

New evidence for the fetal insulin hypothesis: fetal angiotensinogen M235T polymorphism is associated with birth weight and elevated fetal total glycated hemoglobin at birth.

Ludwig Schlemm; Hannah Haumann; Maja Ziegner; Bulza Stirnberg; Andreas Sohn; Markus Alter; Thiemo Pfab; K. Kalache; Florian Guthmann; Berthold Hocher

Background Low birth weight is associated with an increased risk of cardiovascular events in later life. Insulin resistance is a key finding in adult patients with cardiovascular diseases. The neonatal phenotype of an individual with insulin resistance might be low birth weight, as insulin influences fetal growth. The renin–angiotensin–aldosterone system has been associated with cardiovascular disease and insulin resistance. We analyzed whether fetal polymorphisms of the angiotensinogen (AGT) and angiotensin-converting enzyme genes influence birth weight and/or fetal total glycated hemoglobin (fTGH), a surrogate parameter of fetal insulin resistance at birth. Method In 1132 white women delivering singletons, neonatal umbilical blood samples and clinical data of the mothers and newborns were obtained. Newborns were genotyped with respect to the AGT M235T and angiotensin-converting enzyme insertion/deletion polymorphism. Results The AGT M235T TT polymorphism is associated with reduced birth weight (TT: 3288 g versus TM + MM: 3435 g, P < 0.05). Furthermore, newborns with a high percentage of fTGH (>6.5%) are more likely to have the TT genotype than those with normal fTGH (≤6.5%, P < 0.05). With higher cutoffs for fTGH, the significance increases to P less than 0.005. No association was seen between these parameters and the fetal angiotensin-converting enzyme insertion/deletion phenotype. Conclusion The fetal AGT M235T polymorphism is associated with low birth weight and elevated fetal fTGH at birth. Previous findings show that elevated fetal fTGH correlates with low birth weight and that higher activity of the renin–angiotensin–aldosterone system is an independent risk factor for the development of diabetes mellitus and coronary artery disease. Therefore, our data are supportive of the fetal insulin hypothesis.

Collaboration


Dive into the Markus Alter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Kretschmer

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge