Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Blatter is active.

Publication


Featured researches published by Markus Blatter.


Current Opinion in Structural Biology | 2008

RNA recognition motifs: boring? Not quite.

Antoine Cléry; Markus Blatter; Frédéric H.-T. Allain

The RNA recognition motif (RRM) is one of the most abundant protein domains in eukaryotes. While the structure of this domain is well characterized by the packing of two alpha-helices on a four-stranded beta-sheet, the mode of protein and RNA recognition by RRMs is not clear owing to the high variability of these interactions. Here we report recent structural data on RRM-RNA and RRM-protein interactions showing the ability of this domain to modulate its binding affinity and specificity using each of its constitutive elements (beta-strands, loops, alpha-helices). The extreme structural versatility of the RRM interactions explains why RRM-containing proteins have so diverse biological functions.


Nucleic Acids Research | 2014

Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA

Dominik Theler; Cyril Dominguez; Markus Blatter; Julien Boudet; Frédéric H.-T. Allain

N6A methylation is the most abundant RNA modification occurring within messenger RNA. Impairment of methylase or demethylase functions are associated with severe phenotypes and diseases in several organisms. Beside writer and eraser enzymes of this dynamic RNA epigenetic modification, reader proteins that recognize this modification are involved in numerous cellular processes. Although the precise characterization of these reader proteins remains unknown, preliminary data showed that most potential reader proteins contained a conserved YT521-B homology (YTH) domain. Here we define the YTH domain of rat YT521-B as a N6-methylated adenosine reader domain and report its solution structure in complex with a N6-methylated RNA. The structure reveals a binding preference for NGANNN RNA hexamer and a deep hydrophobic cleft for m6A recognition. These findings establish a molecular function for YTH domains as m6A reader domains and should guide further studies into the biological functions of YTH-containing proteins in m6A recognition.


Nucleic Acids Research | 2013

Automated and assisted RNA resonance assignment using NMR chemical shift statistics

Thomas Aeschbacher; Elena Schmidt; Markus Blatter; Christophe Maris; Olivier Duss; Frédéric H.-T. Allain; Peter Güntert; Mario Schubert

The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and 1H and 13C chemical shifts. Statistics of resonances from regularly Watson–Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1′/C1′ chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92–100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding 13C resonances, which provides an important step toward automated structure determination of RNAs.


ChemMedChem | 2016

Design and Development of a Cyclic Decapeptide Scaffold with Suitable Properties for Bioavailability and Oral Exposure

Marianne Fouché; Michael Schäfer; Jörg Berghausen; Sandrine Desrayaud; Markus Blatter; Philippe Piechon; Ina Dix; Aimar Martin Garcia; Hans‐Jörg Roth

Permeability and oral bioavailability of macrocyclic peptides still represent difficult challenges in drug discovery. Despite the recognized potential of macrocyclic peptides as therapeutics, their use is still restricted to extracellular targets and intravenous administration. Indeed, macrocyclic peptides generally suffer from limited proteolytic stability, high clearance, and poor membrane permeability, and this leads to the absence of systemic exposure after oral administration. To overcome these limitations, we started to investigate the development of a general cyclic decapeptide scaffold that possesses ideal features for cell permeability and oral exposure. On the basis of a rigid hairpin structure, the scaffold design aimed to decrease the overall polarity of the compound, thereby limiting the energetic cost of NH desolvation and the entropy penalty during cell penetration. The results of this study also demonstrate the importance of rigidity for the β‐turn design regarding clearance. To stabilize the scaffold in the desired β‐hairpin conformation, the introduction of d‐proline at the i+1 turn position proved to be beneficial for both permeability and clearance. As a result, cyclopeptide decamers with unprecedented high values for oral bioavailability and exposure are reported herein. NMR spectroscopy conformation and dynamic analysis confirmed, for selected examples, the rigidity of the scaffold and the presence of transannular hydrogen bonds in polar and apolar environments. Furthermore, we showed, for one compound, that its transition from a polar environment to an apolar one was accompanied by an increased molecular motion, revealing an entropy contribution to membrane permeation.


Nucleic Acids Research | 2016

Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs.

Miroslav Krepl; Antoine Cléry; Markus Blatter; Frédéric H.-T. Allain; Jiri Sponer

RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes.


Journal of Molecular Biology | 2015

The Signature of the Five-Stranded vRRM Fold Defined by Functional, Structural and Computational Analysis of the hnRNP L Protein

Markus Blatter; Stanislaw Dunin-Horkawicz; Inna Grishina; Christophe Maris; Stéphane Thore; Timm Maier; Albrecht Bindereif; Janusz M. Bujnicki; Frédéric H.-T. Allain

The RNA recognition motif (RRM) is the far most abundant RNA binding domain. In addition to the typical β1α1β2β3α2β4 fold, various sub-structural elements have been described and reportedly contribute to the high functional versatility of RRMs. The heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a highly abundant protein of 64 kDa comprising four RRM domains. Involved in many aspects of RNA metabolism, hnRNP L specifically binds to RNAs containing CA repeats or CA-rich clusters. However, a comprehensive structural description of hnRNP L including its sub-structural elements is missing. Here, we present the structural characterization of the RRM domains of hnRNP L and demonstrate their function in repressing exon 4 of SLC2A2. By comparison of the sub-structural elements between the two highly similar paralog families of hnRNP L and PTB, we defined signatures underlying interacting C-terminal coils (ICCs), the RRM34 domain interaction and RRMs with a C-terminal fifth β-strand, a variation we denoted vRRMs. Furthermore, computational analysis revealed new putative ICC-containing RRM families and allowed us to propose an evolutionary scenario explaining the origins of the ICC and fifth β-strand sub-structural extensions. Our studies provide insights of domain requirements in alternative splicing mediated by hnRNP L and molecular descriptions for the sub-structural elements. In addition, the analysis presented may help to classify other abundant RRM extensions and to predict structure-function relationships.


ChemMedChem | 2016

Pharmacokinetic Studies around the Mono- and Difunctionalization of a Bioavailable Cyclic Decapeptide Scaffold

Marianne Fouché; Michael Schäfer; Markus Blatter; Jörg Berghausen; Sandrine Desrayaud; Hans‐Jörg Roth

We previously reported the design of several cyclic decapeptides based on a generic scaffold that achieved favorable oral bioavailability and exposure. With the goal to further investigate the potential of this approach, we describe herein the effect of mono‐ and difunctionalization of this scaffold. A series of cyclic decapeptides were therefore subjected to a range of in vitro assays and pharmacokinetic (PK) studies to investigate whether the introduction of polar or charged groups could be tolerated by the “engineered” scaffold while maintaining good PK profiles. Whereas the introduction of charged amino acids proved—besides maintaining low clearance—to conceal the inherent PK properties of the scaffold, the introduction of polar amino acids (i.e., threonine and pyridyl alanine) led to several cyclic decapeptides exhibiting excellent PK profiles together with a solubility that was significantly improved relative to that of previously reported cyclic decapeptides.


Nucleic Acids Research | 2017

Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition

Miroslav Krepl; Markus Blatter; Antoine Cléry; Fred F. Damberger; Frédéric H.-T. Allain; Jiri Sponer

Abstract The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.


PeerJ | 2014

Solution and Crystal Structures of a C Terminal Fragment of the Neuronal Isoform of the Polypyrimidine Tract Binding Protein (Nptb)

Amar Joshi; Vicent Esteve; Adrian N. Buckroyd; Markus Blatter; Frédéric H.-T. Allain; Stephen Curry

The eukaryotic polypyrimidine tract binding protein (PTB) serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB) is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA binding specificities and effects on RNA splicing, differential expression of PTB and nPTB can lead to the generation of alternatively spliced mRNAs. RNA binding by PTB and nPTB is mediated by four RNA recognition motifs (RRMs). We present here the crystal and solution structures of the C-terminal domain of nPTB (nPTB34) which contains RRMs 3 and 4. As expected the structures are similar to each other and to the solution structure of the equivalent fragment from PTB (PTB34). The result confirms that, as found for PTB, RRMs 3 and 4 of nPTB interact with one another to form a stable unit that presents the RNA-binding surfaces of the component RRMs on opposite sides that face away from each other. The major differences between PTB34 and nPTB34 arise from amino acid side chain substitutions on the exposed β-sheet surfaces and adjoining loops of each RRM, which are likely to modulate interactions with RNA.


Nature Communications | 2018

rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences

Chantal Sellier; Estefanía Cerro-Herreros; Markus Blatter; Fernande Freyermuth; Angeline Gaucherot; Frank Ruffenach; Partha S. Sarkar; Jack Puymirat; Bjarne Udd; John W. Day; Giovanni Meola; Guillaume Bassez; Harutoshi Fujimura; Masanori P. Takahashi; Benedikt Schoser; Denis Furling; Ruben Artero; Frédéric H.-T. Allain; Beatriz Llamusi; Nicolas Charlet-Berguerand

Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2.Myotonic dystrophy (DM) type 2 is a neuromuscular pathology caused by large expansions of CCTG repeats. Here the authors find that rbFOX1 RNA binding protein binds to CCUG RNA repeats and competes with MBNL1 for the binding to CCUG repeats, releasing MBNL1 from sequestration in DM2 muscle cells.

Collaboration


Dive into the Markus Blatter's collaboration.

Top Co-Authors

Avatar

Alex T. Müller

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gisbert Schneider

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jan A. Hiss

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Petra Schneider

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge