Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Bredel is active.

Publication


Featured researches published by Markus Bredel.


Cell | 2007

CHD5 Is a Tumor Suppressor at Human 1p36

Anindya Bagchi; Cristian Papazoglu; Ying Wu; Daniel Capurso; Michael Brodt; Dailia Francis; Markus Bredel; Hannes Vogel; Alea A. Mills

Cancer gene discovery has relied extensively on analyzing tumors for gains and losses to reveal the location of oncogenes and tumor suppressor genes, respectively. Deletions of 1p36 are extremely common genetic lesions in human cancer, occurring in malignancies of epithelial, neural, and hematopoietic origin. Although this suggests that 1p36 harbors a gene that drives tumorigenesis when inactivated, the identity of this tumor suppressor has remained elusive. Here we use chromosome engineering to generate mouse models with gain and loss of a region corresponding to human 1p36. This approach functionally identifies chromodomain helicase DNA binding domain 5 (Chd5) as a tumor suppressor that controls proliferation, apoptosis, and senescence via the p19(Arf)/p53 pathway. We demonstrate that Chd5 functions as a tumor suppressor in vivo and implicate deletion of CHD5 in human cancer. Identification of this tumor suppressor provides new avenues for exploring innovative clinical interventions for cancer.


Nature Reviews Genetics | 2004

CHEMOGENOMICS: AN EMERGING STRATEGY FOR RAPID TARGET AND DRUG DISCOVERY

Markus Bredel; Edgar Jacoby

Chemogenomics is an emerging discipline that combines the latest tools of genomics and chemistry and applies them to target and drug discovery. Its strength lies in eliminating the bottleneck that currently occurs in target identification by measuring the broad, conditional effects of chemical libraries on whole biological systems or by screening large chemical libraries quickly and efficiently against selected targets. The hope is that chemogenomics will concurrently identify and validate therapeutic targets and detect drug candidates to rapidly and effectively generate new treatments for many human diseases.


Cancer Research | 2005

Functional Network Analysis Reveals Extended Gliomagenesis Pathway Maps and Three Novel MYC-Interacting Genes in Human Gliomas

Markus Bredel; Claudia Bredel; Dejan Juric; Griffith R. Harsh; Hannes Vogel; Lawrence Recht; Branimir I. Sikic

Gene expression profiling has proven useful in subclassification and outcome prognostication for human glial brain tumors. The analysis of biological significance of the hundreds or thousands of alterations in gene expression found in genomic profiling remains a major challenge. Moreover, it is increasingly evident that genes do not act as individual units but collaborate in overlapping networks, the deregulation of which is a hallmark of cancer. Thus, we have here applied refined network knowledge to the analysis of key functions and pathways associated with gliomagenesis in a set of 50 human gliomas of various histogenesis, using cDNA microarrays, inferential and descriptive statistics, and dynamic mapping of gene expression data into a functional annotation database. Highest-significance networks were assembled around the myc oncogene in gliomagenesis and around the integrin signaling pathway in the glioblastoma subtype, which is paradigmatic for its strong migratory and invasive behavior. Three novel MYC-interacting genes (UBE2C, EMP1, and FBXW7) with cancer-related functions were identified as network constituents differentially expressed in gliomas, as was CD151 as a new component of a network that mediates glioblastoma cell invasion. Complementary, unsupervised relevance network analysis showed a conserved self-organization of modules of interconnected genes with functions in cell cycle regulation in human gliomas. This approach has extended existing knowledge about the organizational pattern of gene expression in human gliomas and identified potential novel targets for future therapeutic development.


Cell | 2011

Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2

Christine E. Eyler; Qiulian Wu; Kenneth Yan; Jennifer MacSwords; Devin Chandler-Militello; Katherine L. Misuraca; Justin D. Lathia; Michael T. Forrester; Jeongwu Lee; Jonathan S. Stamler; Steven A. Goldman; Markus Bredel; Roger E. McLendon; Andrew E. Sloan; Anita B. Hjelmeland; Jeremy N. Rich

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


The New England Journal of Medicine | 2011

NFKBIA Deletion in Glioblastomas

Markus Bredel; Denise M. Scholtens; Ajay K. Yadav; Angel A. Alvarez; Jaclyn J. Renfrow; James P. Chandler; Irene L.Y. Yu; Maria Stella Carro; Fangping Dai; Michael Tagge; Roberto Ferrarese; Claudia Bredel; Heidi S. Phillips; Paul J. Lukac; Pierre Robe; Astrid Weyerbrock; Hannes Vogel; Steven Dubner; Bret C. Mobley; Xiaolin He; Adrienne C. Scheck; Branimir I. Sikic; Kenneth D. Aldape; Arnab Chakravarti; Griffith R. Harsh

BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.


Cancer Cell | 2011

Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3.

Olga A. Guryanova; Qiulian Wu; Lin Cheng; Justin D. Lathia; Zhi Huang; Jinbo Yang; Jennifer MacSwords; Christine E. Eyler; Roger E. McLendon; John M. Heddleston; Weinian Shou; Dolores Hambardzumyan; Jeongwu Lee; Anita B. Hjelmeland; Andrew E. Sloan; Markus Bredel; George R. Stark; Jeremy N. Rich; Shideng Bao

Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the bone marrow X-linked (BMX) nonreceptor tyrosine kinase activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to nonstem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.


Cancer Research | 2005

High-resolution genome-wide mapping of genetic alterations in human glial brain tumors.

Markus Bredel; Claudia Bredel; Dejan Juric; Griffith R. Harsh; Hannes Vogel; Lawrence Recht; Branimir I. Sikic

High-resolution genome-wide mapping of exact boundaries of chromosomal alterations should facilitate the localization and identification of genes involved in gliomagenesis and may characterize genetic subgroups of glial brain tumors. We have done such mapping using cDNA microarray-based comparative genomic hybridization technology to profile copy number alterations across 42,000 mapped human cDNA clones, in a series of 54 gliomas of varying histogenesis and tumor grade. This gene-by-gene approach permitted the precise sizing of critical amplicons and deletions and the detection of multiple new genetic aberrations. It has also revealed recurrent patterns of occurrence of distinct chromosomal aberrations as well as their interrelationships and showed that gliomas can be clustered into distinct genetic subgroups. A subset of detected alterations was shown predominantly associated with either astrocytic or oligodendrocytic tumor phenotype. Finally, five novel minimally deleted regions were identified in a subset of tumors, containing putative candidate tumor suppressor genes (TOPORS, FANCG, RAD51, TP53BP1, and BIK) that could have a role in gliomagenesis.


Cancer | 2010

A phase 2 trial of single‐agent bevacizumab given in an every‐3‐week schedule for patients with recurrent high‐grade gliomas

Jeffrey Raizer; Sean Grimm; Marc C. Chamberlain; M. Kelly Nicholas; James P. Chandler; Kenji Muro; Steven Dubner; Alfred Rademaker; Jaclyn J. Renfrow; Markus Bredel

The authors evaluated a 3‐week schedule of bevacizumab in patients with recurrent high‐grade glioma (HGG).


Brain Research Reviews | 2001

Anticancer drug resistance in primary human brain tumors.

Markus Bredel

The difficult clinical situation still associated with most types of primary human brain tumors has fostered significant interest in defining novel therapeutic modalities for this heterogeneous group of neoplasms. Beginning in the 1980s chemotherapy has been incorporated into the treatment protocol of a number of intractable brain tumors. However, it has predominantly failed to improve patient outcome. The unsatisfactory results with chemotherapeutic intervention have chiefly been attributed to tumor cell resistance. In recent years, there has been a literal explosion in our understanding about the mechanisms by which cancer cells become chemoresistant. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance) these cells may follow a number of pathways of genetic alterations to possess a common (multidrug) or drug-specific (individual drug) resistant phenotype. Genomic aberrations, deregulation of membrane transporting proteins and cellular enzymes, and an altered susceptibility to commit to apoptosis are among the steps on the way that contribute to the genesis of chemotherapeutic treatment failure. Although, through the years we have come to yield information and inferences as to the roles that different molecular events may have in the resistance phenotype of cancer cells, the actual involvement of single genetic alterations in conferring drug resistance in primary brain tumors remains debatable. This uncertainty and, besides, the lack of proper drug resistance diagnostics, in a vicious circle, hinder the development of effective resistance-modulation strategies. Clinical non-responsiveness to chemotherapy remains a formidable obstacle to the successful treatment of brain tumors and one of the most serious problems to be solved in the therapy of these lesions. Future advances in the chemotherapeutic management of these neoplasms will come with an improved understanding of the significance and interrelationship of the multiple biological systems operative in promoting resistance to this treatment modality. The focus of this review is to summarize current knowledge concerning major drug resistance-related markers, to describe their functional interaction en route to chemoresistance, and to discuss their implication in rendering human brain tumor cells resistant to chemotherapy.


Cell | 2015

Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion

Humsa Venkatesh; Tessa Johung; Viola Caretti; Alyssa Noll; Yujie Tang; Surya Nagaraja; Erin M. Gibson; Christopher Mount; Jai S. Polepalli; Siddhartha Mitra; Pamelyn Woo; Robert C. Malenka; Hannes Vogel; Markus Bredel; Parag Mallick; Michelle Monje

Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.

Collaboration


Dive into the Markus Bredel's collaboration.

Top Co-Authors

Avatar

John B. Fiveash

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Willey

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunsoo Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge