Markus Chmielewski
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Chmielewski.
Cancer Research | 2011
Markus Chmielewski; Caroline Kopecky; Andreas Hombach; Hinrich Abken
During malignant progression cancer cells tend to lose cell surface expression of MHC and other immune antigens, making them invisible to cytotoxic T cells and therefore inaccessible to tumor antigen-directed immunotherapy. Moreover, cancer cell variants that have lost antigen expression frequently contribute to deadly tumor relapses that occur following treatments that had been initially effective. In an effort to destroy antigen-loss cancer cells in tumors, we created a strategy that combines a chimeric antigen receptor (CAR)-redirected T-cell attack with an engineered local release of the cytokine interleukin 12 (IL-12), which recruits and reinforces macrophage function. Cytotoxic T cells were engineered to release inducible IL-12 upon CAR engagement in the tumor lesion, resulting in destruction of antigen-loss cancer cells that would normally escape. Importantly, elimination of the antigen-loss cancer cells was accompanied by an accumulation of activated macrophages that was critical to the antitumor response, because removing the macrophages abolished the response and restoring them reengaged it. Neutralizing TNF-α also abrogated the elimination of antigen-loss cancer cells, implying this proinflammatory factor in the process. Taken together, our results show how IL-12 supplementation by CAR T cells can target otherwise inaccessible tumor lesions, in a manner associated with reduced systemic toxicity, by recruiting and activating innate immune cells for a proinflammatory response.
Journal of Immunology | 2004
Markus Chmielewski; Andreas Hombach; Claudia Heuser; Gregory P. Adams; Hinrich Abken
Chimeric TCRs with an Ab-derived binding domain confer predefined specificity and MHC-independent target binding to T cells for use in adoptive immunotherapy. We investigated the impact of receptor binding affinity on the activation of grafted T cells. A series of anti-ErbB2 single-chain fragment binding domains with a Kd ranging from 3.2 × 10−7 to 1.5 × 10−11 M was linked to CD3ζ-derived immunoreceptors and expressed in human PBL. Solid phase bound ErbB2 protein triggered activation of receptor-grafted T cells in a dose-dependent manner. The activation threshold inversely correlated with the affinity of the receptor binding domain. The maximum level of cellular activation, however, was the same and independent of the binding affinity. Upon binding to ErbB2+ cells, T cells grafted with immunoreceptors carrying a single-chain fragment of Kd < 10−8 M were activated in a similar fashion against cells with different amounts of ErbB2 on the surface. T cells with a low affinity receptor (Kd > 10−8 M), however, were activated exclusively by cells with high amounts of ErbB2. In conclusion, recombinant immunoreceptors of higher affinity do not necessarily induce a more potent activation of T cells than low affinity immunoreceptors, but the higher affinity immunoreceptors exhibit less discrimination between target cells with high or low Ag expression levels.
Immunological Reviews | 2014
Markus Chmielewski; Andreas Hombach; Hinrich Abken
Adoptive T‐cell therapy recently achieved impressive efficacy in early phase trials, in particular in hematologic malignancies, strongly supporting the notion that the immune system can control cancer. A current strategy of favor is based on ex vivo‐engineered patient T cells, which are redirected by a chimeric antigen receptor (CAR) and recognize a predefined target by an antibody‐derived binding domain. Such CAR T cells can substantially reduce the tumor burden as long as the targeted antigen is present on the cancer cells. However, given the tremendous phenotypic diversity in solid tumor lesions, a reasonable number of cancer cells are not recognized by a given CAR, considerably reducing the therapeutic success. This article reviews a recently described strategy for overcoming this shortcoming of the CAR T‐cell therapy by modulating the tumor stroma by a CAR T‐cell‐secreted transgenic cytokine like interleukin‐12 (IL‐12). The basic process is that CAR T cells, when activated by their CAR, deposit IL‐12 in the targeted tumor lesion, which in turn attracts an innate immune cell response toward those cancer cells that are invisible to CAR T cells. Such TRUCKs, T cells redirected for universal cytokine‐mediated killing, exhibited remarkable efficacy against solid tumors with diverse cancer cell phenotypes, suggesting their evaluation in clinical trials.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Anna Kruschinski; Andreas Moosmann; Isabel Poschke; Håkan Norell; Markus Chmielewski; Barbara Seliger; Rolf Kiessling; Thomas Blankenstein; Hinrich Abken; Jehad Charo
NK cells are promising effectors for tumor adoptive immunotherapy, particularly when considering the targeting of MHC class I low or negative tumors. Yet, NK cells cannot respond to many tumors, which is particularly the case for nonhematopoietic tumors such as carcinomas or melanoma even when these cells lose MHC class I surface expression. Therefore, we targeted primary human NK cells by gene transfer of an activating chimeric receptor specific for HER-2, which is frequently overexpressed on carcinomas. We found that these targeted NK cells were specifically activated upon recognition of all evaluated HER-2 positive tumor cells, including autologous targets, as indicated by high levels of cytokine secretion as well as degranulation. The magnitude of this specific response correlated with the level of HER-2 expression on the tumor cells. Finally, these receptor transduced NK cells, but not their mock transduced counterpart, efficiently eradicated tumor cells in RAG2 knockout mice as visualized by in vivo imaging. Taken together, these results indicate that the expression of this activating receptor overrides inhibitory signals in primary human NK cells and directs them specifically toward HER-2 expressing tumor cells both in vitro and in vivo.
Gastroenterology | 2013
Karin Krebs; Nina Böttinger; Li–Rung Huang; Markus Chmielewski; Silke Arzberger; Georg Gasteiger; Clemens Jäger; Edgar Schmitt; Felix Bohne; Michaela Aichler; Wolfgang Uckert; Hinrich Abken; Mathias Heikenwalder; Percy A. Knolle; Ulrike Protzer
BACKGROUND & AIMS Antiviral agents suppress hepatitis B virus (HBV) replication but do not clear the infection. A strong effector T-cell response is required to eradicate HBV, but this does not occur in patients with chronic infection. T cells might be directed toward virus-infected cells by expressing HBV-specific receptors and thereby clear HBV and help to prevent development of liver cancer. In mice, we studied whether redirected T cells can engraft after adoptive transfer, without prior T-cell depletion, and whether the large amounts of circulating viral antigens inactivate the transferred T cells or lead to uncontrolled immune-mediated damage. METHODS CD8(+) T cells were isolated from mice and stimulated using an optimized protocol. Chimeric antigen receptors (CARs) that bind HBV envelope proteins (S-CAR) and activate T cells were expressed on the surface of cells using retroviral vectors. S-CAR-expressing CD8(+) T cells, which carried the marker CD45.1, were injected into CD45.2(+) HBV transgenic mice. We compared these mice with mice that received CD8(+) T cells induced by vaccination, cells that express a CAR without a proper signaling domain, or cells that express a CAR that does not bind HBV proteins (controls). RESULTS CD8(+) T cells that expressed HBV-specific CARs recognized different HBV subtypes and were able to engraft and expand in immune-competent HBV transgenic mice. After adoptive transfer, the S-CAR-expressing T cells localized to and functioned in the liver and rapidly and efficiently controlled HBV replication compared with controls, causing only transient liver damage. The large amount of circulating viral antigen did not impair or overactivate the S-CAR-grafted T cells. CONCLUSIONS T cells with a CAR specific for HBV envelope proteins localize to the liver in mice to reduce HBV replication, causing only transient liver damage. This immune cell therapy might be developed for patients with chronic hepatitis B, regardless of their HLA type.
Gastroenterology | 2008
Felix Bohne; Markus Chmielewski; Gregor Ebert; Katja Wiegmann; Timo Kürschner; Andreas Schulze; Stephan Urban; Martin Krönke; Hinrich Abken; Ulrike Protzer
BACKGROUND & AIMS The final goal in hepatitis B therapy is eradication of the hepatitis B virus (HBV) replication template, the so-called covalently closed circular DNA (cccDNA). Current antiviral treatment of chronic hepatitis B depends on interferon alpha or nucleoside analogues inhibiting the viral reverse transcriptase. Despite treatment, cccDNA mostly persists in the host cell nucleus, continues to produce hepatitis B surface antigen (HBsAg), and causes relapsing disease. We therefore aimed at eliminating persistently infected hepatocytes carrying HBV cccDNA by redirecting cytolytic T cells toward HBsAg-producing cells. METHODS We designed chimeric T-cell receptors directed against HBV surface proteins present on HBV-infected cells and used them to graft primary human T cells with antibody-like specificity. The receptors were composed of a single chain antibody fragment directed against HBV S or L protein fused to intracellular signalling domains of CD3xi and the costimulatory CD28 molecule. RESULTS Our results show that these chimeric receptors, when retrovirally delivered and expressed on the cell surface, enable primary human T cells to recognize HBsAg-positive hepatocytes, release interferon gamma and interleukin 2, and, most importantly, lyse HBV replicating cells. When coincubated with HBV-infected primary human hepatocytes, these engineered, antigen-specific T cells selectively eliminated HBV-infected and thus cccDNA-positive target cells. CONCLUSIONS Elimination of HBV cccDNA-positive hepatocytes following antiviral therapy is a major therapeutic goal in chronic hepatitis B, and adoptive transfer of grafted T cells provides a promising novel therapeutic approach. However, T-cell therapy may also cause liver damage and therefore needs further preclinical evaluation.
Expert Opinion on Biological Therapy | 2015
Markus Chmielewski; Hinrich Abken
Introduction: Adoptive cell therapy of malignant diseases takes advantage of the cellular immune system to recognize and destroy cancer cells. This is impressively demonstrated by redirecting T cells with a chimeric antigen receptor (CAR) towards CD19, inducing complete and lasting remission of leukemia in more than two-thirds of patients in early phase trials. Areas covered: We outline how the CAR strategy is highly specific in redirecting T cells towards pre-defined target cells, however, reaches its limits when targeting solid tumors with a tremendous phenotypic heterogeneity. After initial tumor reduction by CAR T cells, antigen-negative cancer cells not recognized by CAR may give rise to tumor relapse. The situation may be overcome by CAR-mediated activation of T cells in the tumor, releasing inducible IL-12 which augments T-cell activation and attracts and activates innate immune cells to eliminate antigen-negative cancer cells in the targeted lesion. Expert opinion: CAR T cells with a transgenic ‘payload’, so-called TRUCK T cells or the ‘fourth-generation’ CAR T cells, are worthwhile to explore to shape the tumor environment by the inducible release of transgenic immune modifiers. Such TRUCK T cells are moreover envisioned to be applied in fields beyond cancer therapy including the therapy of virus infections, auto-immune diseases or metabolic disorders.
OncoImmunology | 2012
Andreas Hombach; Johannes Heiders; Marcel Foppe; Markus Chmielewski; Hinrich Abken
Adoptive therapy with chimeric antigen receptor (CAR) redirected T cells recently showed remarkable anti-tumor efficacy in early phase clinical trials; self-repression of the immune response by T-cell secreted cytokines, however, is still an issue raising interest to abrogate the secretion of repressive cytokines while preserving the panel of CAR induced pro-inflammatory cytokines. We here revealed that T-cell activation by a CD28-ζ signaling CAR induced IL-10 secretion, which compromises T cell based immunity, along with the release of pro-inflammatory IFN-γ and IL-2. T cells stimulated by a ζ CAR without costimulation did not secrete IL-2 or IL-10; the latter, however, could be induced by supplementation with IL-2. Abrogation of CD28-ζ CAR induced IL-2 release by CD28 mutation did not reduce IL-10 secretion indicating that IL-10 can be induced by both a CD28 and an IL-2 mediated pathway. In contrast to the CD28-ζ CAR, a CAR with OX40 (CD134) costimulation did not induce IL-10. OX40 cosignaling by a 3rd generation CD28-ζ-OX40 CAR repressed CD28 induced IL-10 secretion but did not affect the secretion of pro-inflammatory cytokines, T-cell amplification or T-cell mediated cytolysis. IL-2 induced IL-10 was also repressed by OX40 co-signaling. OX40 moreover repressed IL-10 secretion by regulatory T cells which are strong IL-10 producers upon activation. Taken together OX40 cosignaling in CAR redirected T cell activation effectively represses IL-10 secretion which contributes to counteract self-repression and provides a rationale to explore OX40 co-signaling CARs in order to prolong a redirected T cell response.
Gastroenterology | 2012
Markus Chmielewski; Olga Hahn; Gunter Rappl; Michael Nowak; Ingo H. Schmidt–Wolf; Andreas Hombach; Hinrich Abken
BACKGROUND & AIMS New treatment approaches are needed for patients with pancreatic adenocarcinoma. Carcinoembryonic antigen (CEA) is highly expressed on the surface of pancreatic adenocarcinoma cells; we investigated the effects of cytolytic T cells that recognize CEA in a mouse model of pancreatic carcinoma. METHODS Immune-competent mice that expressed the CEA transgene (CEAtg) in the intestinal and pulmonary tracts were given intrapancreatic injections of Panc02 CEA(+) cells (express CEA and click beetle luciferase) and tumors were grown for 10 days. Mice were then given single intravenous injections of T cells engineered to express a chimeric antigen receptor (CAR) with high specificity, but moderate affinity, for CEA and a luminescence marker. RESULTS Injection of the anti-CEA CAR T cells reduced the size of pancreatic tumors to below the limit of detection in all mice and produced long-term tumor eradication in 67% of mice. T cells also eradicated CEA(+) fibrosarcoma cells injected 45 days later. Bioluminescence imaging revealed the accumulation and persistence of the T cells at the tumor site. The efficacy of the T cells did not require lymphodepletion and was not reduced by soluble CEA. Mice developed some noninflammatory infiltrations of CAR(+) T cells in intestine and lung, but there was no evidence of destruction of CEA(+) healthy tissues. CONCLUSIONS Injection of T cells that target CEA can eradicate tumors grown from CEA(+) pancreatic carcinoma cells in the pancreas of CEAtg mice without autoimmune effects.
Molecular Therapy | 2011
David M. Kofler; Markus Chmielewski; Gunter Rappl; Anja Hombach; Tobias Riet; Annette Schmidt; Andreas Hombach; Clemens-Martin Wendtner; Hinrich Abken
Adoptive T-cell transfer showed promising efficacy in recent trials raising interest in T cells with redirected specificity against tumors. T cells were engineered with a chimeric antigen receptor (CAR) with predefined binding and CD3ζ signaling to initiate T-cell activation. CD28 costimulation provided by a CD28-CD3ζ signaling CAR moreover improved T cell activation and persistence; however, it failed to meet the expectations with respect to mounting attacks against solid tumors infiltrated with regulatory T (Treg) cells. We revealed that a CD28 CAR-redirected T-cell attack is accompanied by higher numbers of Treg cells infiltrating the tumor and is less efficient against cancer cells in presence of Treg cells than a CD3ζ CAR T-cell attack. Deletion of the lck binding moiety in the CD28 CAR endodomain, however, improved redirected anti-tumor activity in presence of Treg cells without impairing interferon-γ (IFN-γ) secretion, proliferation, and cytolysis. CD28 modification abrogated interleukin-2 (IL-2) induction upon CAR engagement which in turn is no longer available to sustain Treg cell persistence. CARs with the modified CD28 endodomain thereby expedite the implementation of adoptive T-cell therapy in patients with a variety of cancer types that are heavily infiltrated by Treg cells.