Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus G. Rudolph is active.

Publication


Featured researches published by Markus G. Rudolph.


Current Opinion in Immunology | 2002

The specificity of TCR/pMHC interaction

Markus G. Rudolph; Ian A. Wilson

Crystal structures of 11 complexes of TCRs with peptide/MHC (pMHC), that represent 6 independent TCRs, constitute the current structural database for deriving general insights into how alphabeta TCRs recognise peptide-bound MHC class I or class II. The TCRs adopt a roughly diagonal orientation on top of the pMHCs, but the identification of a set of conserved interactions that dictate this orientation is not apparent. Furthermore, the specific interaction of each TCR with its cognate pMHC partner is quite variable and also involves bound water molecules at the TCR/pMHC interface. In two of the systems, the structural basis for binding of altered peptide ligands has illustrated that the only significant conformational changes occur in the TCR/pMHC interface, but their small magnitude is inconsistent with the enormous variation in signalling outcomes. The TCRs adjust to different agonist, partial agonist and antagonist peptides by subtle conformational changes in their complementarity-determining regions, as previously observed in induced-fit mechanisms of antibody/antigen recognition. Alloreactive-complex structures determined or modelled so far indicate increased interactions of the TCR beta-chain with the pMHC compared with their syngeneic counterparts.


Journal of Cell Biology | 2009

TIP47 functions in the biogenesis of lipid droplets

Anna V. Bulankina; Anke Deggerich; Dirk Wenzel; Kudzai Mutenda; Julia G. Wittmann; Markus G. Rudolph; Koert N.J. Burger; Stefan Höning

TIP47 (tail-interacting protein of 47 kD) was characterized as a cargo selection device for mannose 6-phosphate receptors (MPRs), directing their transport from endosomes to the trans-Golgi network. In contrast, our current analysis shows that cytosolic TIP47 is not recruited to organelles of the biosynthetic and endocytic pathways. Knockdown of TIP47 expression had no effect on MPR distribution or trafficking and did not affect lysosomal enzyme sorting. Therefore, our data argue against a function of TIP47 as a sorting device. Instead, TIP47 is recruited to lipid droplets (LDs) by an amino-terminal sequence comprising 11-mer repeats. We show that TIP47 has apolipoprotein-like properties and reorganizes liposomes into small lipid discs. Suppression of TIP47 blocked LD maturation and decreased the incorporation of triacylglycerol into LDs. We conclude that TIP47 functions in the biogenesis of LDs.


Cell | 2005

Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.

Thomas Dierks; Achim Dickmanns; Andrea Preusser-Kunze; Bernhard Schmidt; Malaiyalam Mariappan; Kurt von Figura; Ralf Ficner; Markus G. Rudolph

Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.


Nature Communications | 2012

Structure of the Acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1.

Roger J. P. Dawson; Jörg Benz; Peter Stohler; Tim Tetaz; Catherine Joseph; Sylwia Huber; Georg Schmid; Daniela Hügin; Pascal Pflimlin; Gerd Trube; Markus G. Rudolph; Michael Hennig; Armin Ruf

Venom-derived peptide toxins can modify the gating characteristics of excitatory channels in neurons. How they bind and interfere with the flow of ions without directly blocking the ion permeation pathway remains elusive. Here we report the crystal structure of the trimeric chicken Acid-sensing ion channel 1 in complex with the highly selective gating modifier Psalmotoxin 1 at 3.0 Å resolution. The structure reveals the molecular interactions of three toxin molecules binding at the proton-sensitive acidic pockets of Acid-sensing ion channel 1 and electron density consistent with a cation trapped in the central vestibule above the ion pathway. A hydrophobic patch and a basic cluster are the key structural elements of Psalmotoxin 1 binding, locking two separate regulatory regions in their relative, desensitized-like arrangement. Our results provide a general concept for gating modifier toxin binding suggesting that both surface motifs are required to modify the gating characteristics of an ion channel.


Journal of Experimental Medicine | 2002

Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) Interactions.

John G. Luz; Mingdong Huang; K. Christopher Garcia; Markus G. Rudolph; Vasso Apostolopoulos; Luc Teyton; Ian A. Wilson

The crystal structures of the 2C/H-2Kbm3–dEV8 allogeneic complex at 2.4 Å and H-2Kbm3–dEV8 at 2.15 Å, when compared with their syngeneic counterparts, elucidate structural changes that induce an alloresponse. The Asp77Ser mutation that imbues H-2Kbm3–dEV8 with its alloreactive properties is located beneath the peptide and does not directly contact the T cell receptor (TCR). However, the buried mutation induces local rearrangement of the peptide itself to preserve hydrogen bonding interactions between the peptide and the α1 77 residue. The COOH terminus of the peptide main chain is tugged toward the α1-helix such that its presentation to the TCR is altered. These changes increase the stability of the allogeneic peptide-major histocompatibility complex (pMHC) complex and increase complementarity in the TCR–pMHC interface, placing greater emphasis on recognition of the pMHC by the TCR β-chain, evinced by an increase in shape complementarity, buried surface area, and number of TCR–pMHC contacting residues. A nearly fourfold increase in the number of β-chain–pMHC contacts is accompanied by a concomitant 64% increase in β-chain–pMHC shape complementarity. Thus, the allogeneic mutation causes the same peptide to be presented differently, temporally and spatially, by the allogeneic and syngeneic MHCs.


Nature Immunology | 2001

Crystal structure of the murine NK cell–activating receptor NKG2D at 1.95 Å

Dennis W. Wolan; Luc Teyton; Markus G. Rudolph; Brigitte Villmow; Stefan Bauer; Dirk H. Busch; Ian A. Wilson

NKG2D, a homodimeric lectin-like receptor, is a unique stimulatory molecule that is found on natural killer cells, T cells and activated macrophages. The natural ligands for murine NKG2D are distant major histocompatibility complex homologs, retinoic acid early transcript (Rae1) and H-60 minor histocompatibility antigen. The crystal structure of the extracellular region of murine NKG2D reveals close homology with other C-type lectin receptors such as CD94, Ly49A, rat MBP-A and CD69. However, the precise mode of dimeric assembly varies among these natural killer receptors, as well as their surface topography and electrostatic properties. The NKG2D structure provides the first structural insights into the role and ligand specificity of this stimulatory receptor in the innate and adaptive immune system.


Bioorganic & Medicinal Chemistry Letters | 2011

Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties

Hans Richter; Gregory Martin Benson; Konrad Bleicher; Denise Blum; Evelyne Chaput; N. Clemann; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor

Structure-guided lead optimization of recently described benzimidazolyl acetamides addressed the key liabilities of the previous lead compound 1. These efforts culminated in the discovery of 4-{(S)-2-[2-(4-chloro-phenyl)-5,6-difluoro-benzoimidazol-1-yl]-2-cyclohexyl-acetylamino}-3-fluoro-benzoic acid 7g, a highly potent and selective FXR agonist with excellent physicochemical and ADME properties and potent lipid lowering activity after oral administration to LDL receptor deficient mice.


Immunity | 2001

The Crystal Structures of Kbm1 and Kbm8 Reveal that Subtle Changes in the Peptide Environment Impact Thermostability and Alloreactivity

Markus G. Rudolph; Jeffrey A. Speir; Anders Brunmark; Niklas Mattsson; Michael R. Jackson; Per A. Peterson; Luc Teyton; Ian A. Wilson

The K(bm1) and K(bm8) natural mutants of the murine MHC class I molecule H-2K(b) were originally identified by allograft rejection. They also bind viral peptides VSV8 and SEV9 with high affinity, but their peptide complexes have substantially decreased thermostability, and the K(bm1) complexes do not elicit alloreactive T cell responses. Crystal structures of the four mutant complexes at 1.7-1.9 A resolution are similar to the corresponding wild-type K(b) structures, except in the vicinity of the mutated residues, which alter the electrostatic potential, topology, hydrogen bonding, and local water structure of the peptide binding groove. Thus, these natural K(b) mutations define the minimal perturbations in the peptide environment that alter antigen presentation to T cells and abolish alloreactivity.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes

Hans Richter; Gregory Martin Benson; Denise Blum; Evelyne Chaput; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor; Konrad Bleicher

Herein we describe the synthesis and structure activity relationship of a new class of FXR agonists identified from a high-throughput screening campaign. Further optimization of the original hits led to molecules that were highly active in an LDL-receptor KO model for dyslipidemia. The most promising candidate is discussed in more detail.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist.

Song Feng; Minmin Yang; Zhenshan Zhang; Zhanguo Wang; Di Hong; Hans Richter; Gregory Martin Benson; Konrad Bleicher; Uwe Grether; Rainer E. Martin; Jean-Marc Plancher; Bernd Kuhn; Markus G. Rudolph; Li Chen

According to the docking studies and the analysis of a co-crystal structure of GW4064 with FXR, a series of 3-aryl heterocyclic isoxazole analogs were designed and synthesized. N-Oxide pyridine analog (7b) was identified as a promising FXR agonist with potent binding affinity and good efficacy, supporting our hypothesis that through an additional hydrogen bond interaction between the pyridine substituent of isoxazole analogs and Tyr373 and Ser336 of FXR, binding affinity and functional activity could be improved.

Collaboration


Dive into the Markus G. Rudolph's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge