Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Hengstschläger is active.

Publication


Featured researches published by Markus Hengstschläger.


Immunity | 2008

The TSC-mTOR Signaling Pathway Regulates the Innate Inflammatory Response

Thomas Weichhart; Giuseppina Costantino; Marko Poglitsch; Margit Rosner; Maximilian Zeyda; Karl M. Stuhlmeier; Thomas Kolbe; Thomas M. Stulnig; Walter H. Hörl; Markus Hengstschläger; Mathias Müller; Marcus D. Säemann

The innate inflammatory immune response must be tightly controlled to avoid damage to the host. Here, we showed that the tuberous sclerosis complex-mammalian target of rapamycin (TSC-mTOR) pathway regulated inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells. Inhibition of mTOR by rapamycin promoted production of proinflammatory cytokines via the transcription factor NF-kappaB but blocked the release of interleukin-10 via the transcription factor STAT3. Conversely, deletion of TSC2, the key negative regulator of mTOR, diminished NF-kappaB but enhanced STAT3 activity and reversed this proinflammatory cytokine shift. Rapamycin-hyperactivated monocytes displayed a strong T helper 1 (Th1) cell- and Th17 cell-polarizing potency. Inhibition of mTOR in vivo regulated the inflammatory response and protected genetically susceptible mice against lethal Listeria monocytogenes infection. These data identify the TSC2-mTOR pathway as a key regulator of innate immune homeostasis with broad clinical implications for infectious and autoimmune diseases, vaccination, cancer, and transplantation.


Mutation Research-reviews in Mutation Research | 2013

In vitro cell migration and invasion assays.

Nina Kramer; Angelika Walzl; Christine Unger; Margit Rosner; Georg Krupitza; Markus Hengstschläger; Helmut Dolznig

Determining the migratory and invasive capacity of tumor and stromal cells and clarifying the underlying mechanisms is most relevant for novel strategies in cancer diagnosis, prognosis, drug development and treatment. Here we shortly summarize the different modes of cell travelling and review in vitro methods, which can be used to evaluate migration and invasion. We provide a concise summary of established migration/invasion assays described in the literature, list advantages, limitations and drawbacks, give a tabular overview for convenience and depict the basic principles of the assays graphically. In many cases particular research problems and specific cell types do not leave a choice for a broad variety of usable assays. However, for most standard applications using adherent cells, based on our experience we suggest to use exclusion zone assays to evaluate migration/invasion. We substantiate our choice by demonstrating that the advantages outbalance the drawbacks e.g. the simple setup, the easy readout, the kinetic analysis, the evaluation of cell morphology and the feasibility to perform the assay with standard laboratory equipment. Finally, innovative 3D migration and invasion models including heterotypic cell interactions are discussed. These methods recapitulate the in vivo situation most closely. Results obtained with these assays have already shed new light on cancer cell spreading and potentially will uncover unknown mechanisms.


Current Biology | 1998

Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family.

Edgar R. Kramer; Christian Gieffers; Gabriele Hölzl; Markus Hengstschläger; Jan-Michael Peters

The initiation of anaphase and exit from mitosis depend on the activation of the cyclosome/anaphase-promoting complex (APC) that ubiquitinates regulatory proteins such as anaphase inhibitors and mitotic cyclins [1-4]. Genetic experiments have demonstrated that two related WD40-repeat proteins--called Cdc20p and Hct1p/Cdh1p in budding yeast and Fizzy and Fizzy-related in Drosophila--are essential for APC--dependent proteolysis [5-11]. Human orthologs of these proteins--hCDC20/p55CDC [12] and hCDH1--have recently been found to associate with APC in a cell-cycle-dependent manner [13,14]. Here, we show that the amount of hCDC20 and hCDH1 bound to APC correlates with a high ubiquitination activity of APC and that binding of recombinant hCDC20 and hCDH1 can activate APC in vitro. Our results suggest that the association between hCDH1 and APC is regulated by post-translational mechanisms, whereas the amount of hCDC20 bound to APC may in addition be controlled by hCDC20 synthesis and destruction [15]. The temporally distinct association of hCDC20 and hCDH1 with APC suggests that these proteins are, respectively, mitosis-specific and G1-specific activating subunits of APC.


Nature Reviews Immunology | 2015

Regulation of innate immune cell function by mTOR

Thomas Weichhart; Markus Hengstschläger; Monika Linke

The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.


Human Molecular Genetics | 2008

Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1.

Margit Rosner; Markus Hengstschläger

The mammalian target of rapamycin (mTOR) is part of two distinct complexes, mTORC1, containing raptor and mLST8, and mTORC2, containing rictor, mLST8 and sin1. Although great endeavors have already been made to elucidate the function and regulation of mTOR, the cytoplasmic nuclear distribution of the mTOR complexes is unknown. Upon establishment of the proper experimental conditions, we found mTOR, mLST8, rictor and sin1 to be less abundant in the nucleus than in the cytoplasm of non-transformed, non-immortalized, diploid human primary fibroblasts. Although raptor is also high abundant in the nucleus, the mTOR/raptor complex is predominantly cytoplasmic, whereas the mTOR/rictor complex is abundant in both compartments. Rapamycin negatively regulates the formation of both mTOR complexes, but the molecular mechanism of its effects on mTORC2 remained elusive. We describe that in primary cells short-term treatment with rapamycin triggers dephosphorylation of rictor and sin1 exclusively in the cytoplasm, but does not affect mTORC2 assembly. Prolonged drug treatment leads to complete dephosphorylation and cytoplasmic translocation of nuclear rictor and sin1 accompanied by inhibition of mTORC2 assembly. The distinct cytoplasmic and nuclear upstream and downstream effectors of mTOR are involved in many cancers and human genetic diseases, such as tuberous sclerosis, Peutz-Jeghers syndrome, von Hippel-Lindau disease, neurofibromatosis type 1, polycystic kidney disease, Alzheimers disease, cardiac hypertrophy, obesity and diabetes. Accordingly, analogs of rapamycin are currently tested in many different clinical trials. Our data allow new insights into the molecular consequences of mTOR dysregulation under pathophysiological conditions and should help to optimize rapamycin treatment of human diseases.


Mutation Research-reviews in Mutation Research | 2008

The mTOR pathway and its role in human genetic diseases

Margit Rosner; Michaela Hanneder; Nicol Siegel; Alessandro Valli; Christiane Fuchs; Markus Hengstschläger

The signalling components upstream and downstream of the protein kinase mammalian target of rapamycin (mTOR) are frequently altered in a wide variety of human diseases. Upstream of mTOR key signalling molecules are the small GTPase Ras, the lipid kinase PI3K, the Akt kinase, and the GTPase Rheb, which are known to be deregulated in many human cancers. Mutations in the mTOR pathway component genes TSC1, TSC2, LKB1, PTEN, VHL, NF1 and PKD1 trigger the development of the syndromes tuberous sclerosis, Peutz-Jeghers syndrome, Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Lhermitte-Duclos disease, Proteus syndrome, von Hippel-Lindau disease, Neurofibromatosis type 1, and Polycystic kidney disease, respectively. In addition, the tuberous sclerosis proteins have been implicated in the development of several sporadic tumors and in the control of the cyclin-dependent kinase inhibitor p27, known to be of relevance for several cancers. Recently, it has been recognized that mTOR is regulated by TNF-alpha and Wnt, both of which have been shown to play critical roles in the development of many human neoplasias. In addition to all these human diseases, the role of mTOR in Alzheimers disease, cardiac hypertrophy, obesity and type 2 diabetes is discussed.


Mutation Research-reviews in Mutation Research | 2008

The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners.

Margit Rosner; Michaela Hanneder; Nicol Siegel; Alessandro Valli; Markus Hengstschläger

Mutations in the tumor suppressor genes TSC1 and TSC2, encoding hamartin and tuberin, respectively, cause the tumor syndrome tuberous sclerosis with similar phenotypes. Until now, over 50 proteins have been demonstrated to interact with hamartin and/or tuberin. Besides tuberin, the proteins DOCK7, ezrin/radixin/moesin, FIP200, IKKbeta, Melted, Merlin, NADE(p75NTR), NF-L, Plk1 and TBC7 have been found to interact with hamartin. Whereas Plk1 and TBC7 have been demonstrated not to bind to tuberin, for all the other hamartin-interacting proteins the question, whether they can also bind to tuberin, has not been studied. Tuberin interacts with 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, AMPK, CaM, CRB3/PATJ, cyclin A, cyclins D1, D2, D3, Dsh, ERalpha, Erk, FoxO1, HERC1, HPV16 E6, HSCP-70, HSP70-1, MK2, NEK1, p27KIP1, Pam, PC1, PP2Ac, Rabaptin-5, Rheb, RxRalpha/VDR and SMAD2/3. 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, Dsh, FoxO1, HERC1, p27KIP1 and PP2Ac are known not to bind to hamartin. For the other tuberin-interacting proteins this question remains elusive. The proteins axin, Cdk1, cyclin B1, GADD34, GSK3, mTOR and RSK1 have been found to co-immunoprecipitate with both, hamartin and tuberin. The kinases Cdk1 and IKKbeta phosphorylate hamartin, Erk, Akt, MK2, AMPK and RSK1 phosphorylate tuberin, and GSK3 phosphorylates both, hamartin and tuberin. This detailed summary of protein interactions allows new insights into their relevance for the wide variety of different functions of hamartin and tuberin.


Mutation Research-reviews in Mutation Research | 2010

The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: Mercury and lead

Claudia Gundacker; Martin Gencik; Markus Hengstschläger

The heavy metals mercury and lead are well-known and significant developmental neurotoxicants. This review summarizes the genetic factors that modify their toxicokinetics. Understanding toxicokinetics (uptake, biotransformation, distribution, and elimination processes) is a key precondition to understanding the individual health risks associated with exposure. We selected candidate susceptibility genes when evidence was available for (1) genes/proteins playing a significant role in mercury and lead toxicokinetics, (2) gene expression/protein activity being induced by these metals, and (3) mercury and lead toxicokinetics being affected by gene knockout/knockdown or (4) by functional gene polymorphisms. The genetic background is far better known for mercury than for lead toxicokinetics. Involved are genes encoding L-type amino acid transporters, organic anion transporters, glutathione (GSH)-related enzymes, metallothioneins, and transporters of the ABC family. Certain gene variants can influence mercury toxicokinetics, potentially explaining part of the variable susceptibility to mercury toxicity. Delta-aminolevulinic acid dehydratase (ALAD), vitamin D receptor (VDR) and hemochromatosis (HFE) gene variants are the only well-established susceptibility markers of lead toxicity in humans. Many gaps remain in our knowledge about the functional genomics of this issue. This calls for studies to detect functional gene polymorphisms related to mercury- and lead-associated disease phenotypes, to demonstrate the impact of functional polymorphisms and gene knockout/knockdown in relation to toxicity, to confirm the in vivo relevance of genetic variation, and to examine gene-gene interactions on the respective toxicokinetics. Another crucial aspect is knowledge on the maternal-fetal genetic background, which modulates fetal exposure to these neurotoxicants. To completely define the genetically susceptible risk groups, research is also needed on the genes/proteins involved in the toxicodynamics, i.e., in the mechanisms causing adverse effects in the brain. Studies relating the toxicogenetics to neurodevelopmental disorders are lacking (mercury) or very scarce (lead). Thus, the extent of variability in susceptibility to heavy metal-associated neurological outcomes is poorly characterized.


Oncogene | 2003

Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38

Margit Rosner; Katja Hofer; Marion Kubista; Markus Hengstschläger

TSC1 and TSC2 are responsible for the tumor suppressor gene syndrome tuberous sclerosis (TSC). Mammalian TSC genes have been shown to be involved in cell cycle regulation. Recently, in Drosophila, these data have been confirmed and TSC genes have further been demonstrated to affect cell size control. Here we provide supporting data for the fact that the latter function is conserved in mammals. Human TSC1 and TSC2 trigger mammalian cell size reduction and a dominant-negative TSC2 mutant induces increased size. These effects occur in all cell cycle phases, are dependent on the activity of the phosphoinositide-3-kinase and are abolished by co-overexpression of a dominant-negative Akt mutant. Two independent naturally occurring and disease-causing mutations within the TSC2 gene eliminate tuberins capacity to affect cell size control, emphasizing the relevance of this function for the development of the disease. The same mutations have earlier been shown not to affect tuberins antiproliferative capacity. That the consequences of modulated TSC gene expression on cell proliferation and on cell size can be assigned to separable functions is further supported by two findings: A mutation within the TSC1 gene, earlier shown to still harbor anti-proliferative effects, was found to eliminate the cell size regulating functions. An important mammalian cell size regulator, c-Myc, was found to inhibit tuberins antiproliferative capacity, but to have no effects on tuberin-dependent cell size control. To obtain further mechanistical insights, microarray screens for genes involved in TSC1- or TSC2-mediated cell size effects were performed. Antisense experiments revealed that the so observed regulation of the FK506-binding protein, FKBP38, plays a role in TSC gene-dependent cell size regulation. These data provide new insights into mammalian cell size regulation and allow a better understanding of the function of human TSC genes.


Mutation Research-reviews in Mutation Research | 1999

Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle

Markus Hengstschläger; Katja Braun; Thomas Soucek; Angelina Miloloza; Elke Hengstschläger-Ottnad

In the mammalian cell cycle, the transition from the G1 phase to S phase, in which DNA replication occurs, is dependent on tight cell size control and has been shown to be regulated by the cyclin-dependent kinases (Cdks) 2, 3, 4 and 6. Activities of Cdks are controlled by association with cyclins and reversible phosphorylation reactions. An additional level of regulation is provided by inhibitors of Cdks. G1-S and S phase substrates of these enzymes include proteins implicated in replication and transcription. Whereas the regulation and role of Cdk2, 4 and 6 has intensively been studied, less is known about Cdk3. Recent data provide first insights into the regulation of Cdk3-associate kinase activity and suggest a model how Cdk3 participates in the regulation of the G1-S transition. Although it has been shown that these G1-Cdks are absolutely essential for a proper transition into S phase, their physiological activation is not sufficient to directly initiate replication independently of cell size. Evidence obtained from yeast and Xenopus indicate the initiation of DNA replication to be a two-step process: the origin recognition complex, Cdc6 and Mcm proteins are required for establishing the prereplicative complex and the activities of Cdks and of Cdc7 kinase then trigger the G1-S transition. Recent findings provide evidence that the overall mechanism of initiation of replication is conserved in mammalian cells.

Collaboration


Dive into the Markus Hengstschläger's collaboration.

Top Co-Authors

Avatar

Margit Rosner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Dolznig

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Mikula

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Fuchs

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nicol Siegel

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Katharina Schipany

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nina Kramer

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge