Markus Honickel
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Honickel.
Thrombosis and Haemostasis | 2015
Markus Honickel; S. Treutler; J. van Ryn; S. Tillmann; Rolf Rossaint; Oliver Grottke
Urgent surgery or life-threatening bleeding requires prompt reversal of the anticoagulant effects of dabigatran. This study assessed the ability of three- and four-factor prothrombin complex concentrate (PCC) and idarucizumab (specific antidote for dabigatran) to reverse the anticoagulant effects of dabigatran in a porcine model of trauma. Twelve animals were given dabigatran etexilate (DE) orally and dabigatran intravenously, before infliction of trauma. Six animals received tranexamic acid plus fibrinogen concentrate 12 minutes post-injury. Six PCCs (each 30 and 60 U/kg) and idarucizumab (30 and 60 mg/kg) were added to blood samples ex vivo. Coagulation was assessed by several coagulation assays. All coagulation parameters were altered after dabigatran infusion (plasma level: 442 ± 138 ng/ml). Both three- and four-factor PCCs mostly or completely reversed the effects of dabigatran on thromboelastometry variables and PT but not on aPTT. Idarucizumab neutralised plasma concentrations of dabigatran, and reversed the effects of the drug on coagulation variables. Thrombin generation showed dose-dependent over-correction following the addition of PCC, implying that elevated levels of thrombin are required to overcome dabigatran-induced coagulopathy. In contrast, treatment with idarucizumab returned thrombin generation to baseline levels. Following trauma, therapy with tranexamic acid plus fibrinogen improved correction of coagulation parameters by PCC, and thromboelastometry parameters by idarucizumab. All investigated PCCs improved dabigatran- and trauma-induced coagulopathy to a similar degree. In conclusion, this study shows that three- and four-factor PCCs are similarly effective for dabigatran reversal. Idarucizumab also reversed the effects of dabigatran and, unlike PCCs, was not associated with over-correction of thrombin generation.
Thrombosis and Haemostasis | 2011
Markus Honickel; Annette D. Rieg; Rolf Rossaint; Till Braunschweig; Henri M.H. Spronk; H. ten Cate; R. van Oerle; Rene Tolba; Oliver Grottke
Although prothrombin complex concentrate (PCC) is increasingly used for the treatment of trauma-induced coagulopathy, few studies have investigated the impact and safety of PCC for this indication. The present study was performed to assess PCC for treatment of coagulopathy after blunt liver injury under severe hypothermia. Coagulopathy in 14 anaesthetised pigs was induced by haemodilution. Subsequently, standardised blunt liver injury was induced under severe hypothermia (32.8-33.2°C). Animals were randomised to receive either PCC (35 IU kg⁻¹) or saline (control). Coagulation was assessed over the following 2 hours by thromboelastometry and thrombin generation. Internal organs were examined to determine presence of emboli. The administration of PCC showed a significant reduction in blood loss (p=0.002 vs. controls) and a significant increase in the rate of survival (p=0.022 vs. controls). Plasma thrombin generation in the PCC group increased considerably above baseline levels, with significant increases in peak thrombin levels and endogenous thrombin potential versus controls throughout the follow-up period. In addition, PT decreased significantly in the PCC group versus the control group. However, only slight improvements in thromboelastometry variables were observed. Histology showed an equal degree of liver injury in both groups, and no thromboembolism. In severely hypothermic pigs, the application of PCC corrected trauma-induced coagulopathy and reduced blood loss. Thus, the infusion of PCC might be a reasonable approach to reduce the need for blood cell transfusion in trauma. Furthermore, the impact and safety of PCC application can be monitored through thrombin generation and thromboelastometry under hypothermia.
Thrombosis and Haemostasis | 2015
Markus Honickel; Benjamin Maron; Joanne van Ryn; Till Braunschweig; Hugo ten Cate; Henri M.H. Spronk; Rolf Rossaint; Oliver Grottke
Clinical use of non-vitamin K antagonist oral anticoagulants is increasingly well established. However, specific agents for reversal of these drugs are not currently available. It was to objective of this study to investigate the impact of activated prothrombin complex concentrate (aPCC) on the anticoagulant effects of dabigatran in a randomised, controlled, porcine trauma model. Twenty-one pigs received oral and intravenous dabigatran, resulting in supratherapeutic plasma concentrations. Twelve minutes after injury (standardised bilateral femur fractures and blunt liver injury), animals (n=7/group) received 25 or 50 U/kg aPCC (aPCC25 and aPCC50) or placebo (control) and were followed for 5 hours. The primary endpoint was total volume of blood loss (BL). Haemodynamic and coagulation variables (prothrombin time [PT], activated partial thromboplastin time, diluted thrombin time, thrombin-antithrombin complexes, thromboelastometry, thrombin generation and D-dimers) were measured. Twelve minutes post-injury, BL was similar between groups. Compared with control (total BL: 3807 ± 570 ml) and aPCC25 (3690 ± 454 ml; p=0.77 vs control), a significant reduction in total BL (1639 ± 276 ml; p< 0.0001) and improved survival (p< 0.05) was observed with aPCC50. Dabigatrans anticoagulant effects were effectively treated in the aPCC50 group, as measured by several parameters including EXTEM clotting time (CT) and PT. In contrast, with aPCC25, laboratory values were initially corrected but subsequently deteriorated due to ongoing blood loss. Thromboembolic or bleeding effects were not detected. In conclusion, blood loss following trauma in dabigatran-anticoagulated pigs was successfully reduced by 50 U/kg aPCC. Optimal methodology for measuring amelioration of dabigatran anticoagulation by aPCC is yet to be determined.
Anesthesiology | 2015
Markus Honickel; Till Braunschweig; Joanne van Ryn; Hugo ten Cate; Henri M.H. Spronk; Rolf Rossaint; Oliver Grottke
Background:In the event of trauma, emergency reversal of anticoagulation therapy may be required. However, no specific reversal agents are routinely available for the direct oral anticoagulants such as dabigatran. The authors investigated four-factor prothrombin complex concentrate (PCC) for treating dabigatran-induced anticoagulation in a porcine polytrauma model. Methods:Dabigatran etexilate was given orally for 3 days and intravenously on day 4 to 32 pigs. Animals were randomized 1:1:1:1 to PCC (25, 50, or 100 U/kg) or saline. Study medication was administered 12 min after bilateral femur fractures and blunt liver injury. The primary endpoint was blood loss at 300 min. Results:The mean plasma concentration of dabigatran was 487 ± 161 ng/ml after intravenous administration. Blood loss was 3,855 ± 258 ml in controls and 3,588 ± 241 ml in the PCC25 group. In the PCC50 and PCC100 groups, blood loss was significantly lower: 1,749 ± 47 ml and 1,692 ± 97 ml, respectively. PCC50 and PCC100 effectively reduced dabigatran’s effects on coagulation parameters, whereas control and (to a lesser extent) PCC25 animals developed severe coagulopathy. Sustained increases in endogenous thrombin potential occurred with PCC50 and PCC100. Conclusion:Four-factor PCC (50 or 100 U/kg) is effective in reducing blood loss in dabigatran-anticoagulated pigs, but higher doses may induce a procoagulant state.
Journal of the American College of Cardiology | 2014
Oliver Grottke; Markus Honickel; Joanne van Ryn; Rolf Rossaint; Hugo ten Cate; Henri Spronk
This study investigated the effectiveness of a specific antidote for dabigatran (aDabi-Fab) to reverse bleeding in a dabigatran anticoagulated pig trauma model. After ethical approval, male pigs (n=24) were given dabigatran etexilate for 3 days (30 mg/kg bid PO), the sham group (n=6) received
Anesthesia & Analgesia | 2016
Christian Zentai; Paola E. J. van der Meijden; Till Braunschweig; Nicolai Hueck; Markus Honickel; Henri M.H. Spronk; Rolf Rossaint; Oliver Grottke
BACKGROUND:The potential clinical benefits of targeted therapy with coagulation factor concentrates (e.g., fibrinogen) and antifibrinolytic agents (e.g., tranexamic acid [TXA]) for the treatment of trauma-induced coagulopathy are increasingly recognized. We hypothesized that human fibrinogen concentrate (FC) and prothrombin complex concentrate (PCC), administered as combined therapy with TXA, would provide additive effects for reducing blood loss in an animal trauma model. METHODS:Thirty-six pigs were subjected to 2 consecutive blunt liver injuries, resulting in severe hemorrhagic shock and coagulopathy. Intervention comprised saline (control group); TXA (15 mg kg−1, TXA group); TXA and FC (90 mg kg−1, TXA–FC); or TXA, FC, and PCC (20 U kg−1, TXA–FC–PCC). Blood loss, thromboelastometry (ROTEM), measures of thrombin generation, platelet activation, and global coagulation variables were monitored for 4 hours. Tissue sections were examined to determine the occurrence of thromboembolic events. RESULTS:Total blood loss was similar in the TXA–FC and TXA–FC–PCC groups (mean ± SD: 1012 ± 86 mL and 1037 ± 118 mL, respectively; P = 1.000). These values were both lower (P < 0.001) than the TXA group (1579 ± 306 mL). Blood loss in all 3 intervention groups was lower (P < 0.001) than in the control group (2376 ± 478 mL). After trauma and resuscitation, but before study intervention, plasma fibrinogen levels were severely depleted (median for the whole study population: 66 mg dL−1; interquartile range: 51–108 mg dL−1) and clot strength was decreased (EXTEM whole-blood maximum clot firmness [MCF]: 53 ± 5 mm). Compared with controls, TXA inhibited fibrinolysis and stabilized MCF and clotting time. The addition of FC restored and stabilized hemostasis to a greater extent than TXA alone; the addition of PCC had no statistically significant impact on blood loss, clot strength (MCF), or clotting time, but it increased thrombin generation. There were no significant differences among the study groups regarding platelet activation. No thrombi or microthrombi were observed in any group at necropsy. CONCLUSIONS:The early use of TXA and FC reduced blood loss and improved coagulation measurements in a porcine model of blunt liver injury and hemorrhagic shock. FC, administered in addition to TXA, was highly effective in reducing blood loss. The lack of statistically significant reduction in blood loss when PCC was added to TXA and FC may be attributable to the absence of thrombin generation impairment in this model.
Shock | 2017
Markus Honickel; Necib Akman; Oliver Grottke
ABSTRACT Several direct oral anticoagulants (DOACs), including direct thrombin and factor Xa inhibitors, have been approved as alternatives to vitamin K antagonist anticoagulants. As with any anticoagulant, DOAC use carries a risk of bleeding. In patients with major bleeding or needing urgent surgery, reversal of DOAC anticoagulation may be required, presenting a clinical challenge. The optimal strategy for DOAC reversal is being refined, and may include use of hemostatic agents such as prothrombin complex concentrates (PCCs; a source of concentrated clotting factors), or DOAC-specific antidotes (which bind their target DOAC to abrogate its activity). Though promising, most specific antidotes are still in development. Preclinical animal research is the key to establishing the efficacy and safety of potential reversal agents. Here, we summarize published preclinical animal studies on reversal of DOAC anticoagulation. These studies (n = 26) were identified via a PubMed search, and used rodent, rabbit, pig, and non-human primate models. The larger of these animals have the advantages of similar blood volume/hemodynamics to humans, and can be used to model polytrauma. We find that in addition to varied species being used, there is variability in the models and assays used between studies; we suggest that blood loss (bleeding volume) is the most clinically relevant measure of DOAC anticoagulation-related bleeding and its reversal. The studies covered indicate that both PCCs and specific reversal agents have the potential to be used as part of a clinical strategy for DOAC reversal. For the future, we advocate the development and use of standardized, clinically, and pharmacologically relevant animal models to study novel DOAC reversal strategies.
Anesthesiology | 2017
Markus Honickel; Till Braunschweig; Rolf Rossaint; Christian Stoppe; Hugo ten Cate; Oliver Grottke
Background: Although idarucizumab is the preferred treatment for urgent dabigatran reversal, it is not always available. Prothrombin complex concentrate (PCC) may be an alternative and, with bleeding in trauma, additional hemostatic therapy may be required. The authors investigated multimodal treatment in a preclinical polytrauma model. Methods: Dabigatran etexilate (30 mg/kg twice daily) was given orally to 45 male pigs for 3 days. On day 4, animals received a dabigatran infusion before blunt liver injury and bilateral femur fractures. After injury, animals were randomized 1:1:1:1:1 to receive placebo (control), tranexamic acid (TXA; 20 mg/kg) plus human fibrinogen concentrate (FCH; 80 mg/kg) (TXA–FCH group), PCC (25 U/kg or 50 U/kg) plus TXA plus FCH (PCC25 and PCC50 groups), or 60 mg/kg idarucizumab (IDA) plus TXA plus FCH (IDA group). Animals were monitored for 240 min after trauma, or until death. Results: The degree of injury was similar in all animals before intervention. Control and TXA–FCH animals had the highest total postinjury blood loss (3,652 ± 601 and 3,497 ± 418 ml) and 100% mortality (mean survival time 96 and 109 min). Blood loss was significantly lower in the PCC50 (1,367 ± 273 ml) and IDA (986 ± 144 ml) groups, with 100% survival. Thrombin–antithrombin levels and thrombin generation were significantly elevated in the PCC50 group. Conclusions: Idarucizumab may be considered the optimal treatment for emergency reversal of dabigatran anticoagulation. However, this study suggests that PCC may be similarly effective as idarucizumab and could therefore be valuable when idarucizumab is unavailable. (Anesthesiology 2017; 127:852-61)
Asaio Journal | 2015
Christian Bleilevens; Oliver Grottke; Sabine Tillmann; Markus Honickel; R. Kopp; Jutta Arens; Rolf Rossaint
In vitro test systems for extracorporeal membrane oxygenation (mock loop) represent an interesting alternative to complex and expensive in vivo test systems to analyze the pathomechanisms leading to insufficient biocompatibility. Data on mock loop systems are limited, and operation times are constricted to a maximum duration of 6 hr. This study aims at a 12 hr operation time and frequent monitoring of markers for insufficient biocompatibility in two experimental settings. Porcine blood circulated in a mock loop without any modifications, or the circuit was operated with a CO2-enhanced gas (5% CO2/21% O2/74% N2) in combination with a nutrient solution (phosphate–adenine–glucose–guanosine–saline–mannitol). Coagulation parameters changed over time without differences between the two groups. In the unmodified test setting, a pH increase was detected after 1 hr, followed by significantly increased levels of free hemoglobin as a marker for hemolysis and elevated numbers of activated platelets, which correlate with detected von Willebrand factor, microparticles, and interleukin-&bgr;. Proinflammatory cytokine levels were significantly increased after 12 hr. In contrast, these parameters remained constant in the modified test setting providing proof of a stable operating in vitro mock loop system with an extended/prolonged operation time.
Clinical and Applied Thrombosis-Hemostasis | 2018
Stephan Glund; Guanfa Gan; Viktoria Moschetti; Paul A. Reilly; Markus Honickel; Oliver Grottke; Joanne van Ryn
Idarucizumab, a humanized monoclonal antibody fragment (Fab), provides rapid and sustained reversal of dabigatran-mediated anticoagulation. Idarucizumab and dabigatran are mainly eliminated via the kidneys. This analysis aimed to characterize the renal elimination of idarucizumab and investigate the influence of idarucizumab on the pharmacokinetics (PK) of dabigatran and vice versa. Studies were conducted in 5/6 nephrectomized rats, in human volunteers with and without renal impairment, and in a porcine liver trauma model. In both rats and humans, renal impairment increased idarucizumab exposure and initial half-life but did not affect its terminal half-life. Urinary excretion of unchanged idarucizumab increased with increasing idarucizumab dose, suggesting saturation of renal tubular reuptake processes at higher doses. The PK of idarucizumab was unaffected by dabigatran. In contrast, idarucizumab administration resulted in redistribution of dabigatran to the plasma, where it was bound and inactivated by idarucizumab. Urinary excretion of dabigatran after administration of idarucizumab was delayed, but total dabigatran excreted in urine was unaffected. Idarucizumab and dabigatran were eliminated together via renal pathways.