Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Ihmsen is active.

Publication


Featured researches published by Markus Ihmsen.


international conference on computer graphics and interactive techniques | 2012

Versatile rigid-fluid coupling for incompressible SPH

Nadir Akinci; Markus Ihmsen; Gizem Akinci; Barbara Solenthaler; Matthias Teschner

We propose a momentum-conserving two-way coupling method of SPH fluids and arbitrary rigid objects based on hydrodynamic forces. Our approach samples the surface of rigid bodies with boundary particles that interact with the fluid, preventing deficiency issues and both spatial and temporal discontinuities. The problem of inhomogeneous boundary sampling is addressed by considering the relative contribution of a boundary particle to a physical quantity. This facilitates not only the initialization process but also allows the simulation of multiple dynamic objects. Thin structures consisting of only one layer or one line of boundary particles, and also non-manifold geometries can be handled without any additional treatment. We have integrated our approach into WCSPH and PCISPH, and demonstrate its stability and flexibility with several scenarios including multiphase flow.


IEEE Transactions on Visualization and Computer Graphics | 2014

Implicit Incompressible SPH

Markus Ihmsen; Jens Cornelis; Barbara Solenthaler; Christopher Horvath; Matthias Teschner

We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.


Computer Graphics Forum | 2011

A Parallel SPH Implementation on Multi-Core CPUs

Markus Ihmsen; Nadir Akinci; Markus Becker; Matthias Teschner

This paper presents a parallel framework for simulating fluids with the Smoothed Particle Hydrodynamics (SPH) method. For low computational costs per simulation step, efficient parallel neighbourhood queries are proposed and compared. To further minimize the computing time for entire simulation sequences, strategies for maximizing the time step and the respective consequences for parallel implementations are investigated. The presented experiments illustrate that the parallel framework can efficiently compute large numbers of time steps for large scenarios. In the context of neighbourhood queries, the paper presents optimizations for two efficient instances of uniform grids, that is, spatial hashing and index sort. For implementations on parallel architectures with shared memory, the paper discusses techniques with improved cache‐hit rate and reduced memory transfer. The performance of the parallel implementations of both optimized data structures is compared. The proposed solutions focus on systems with multiple CPUs. Benefits and challenges of potential GPU implementations are only briefly discussed.


eurographics | 2009

Corotated SPH for deformable solids

Markus Becker; Markus Ihmsen; Matthias Teschner

Smoothed Particle Hydrodynamics (SPH) is a powerful technique for the animation of natural phenomena. While early SPH approaches in Computer Graphics have mainly been concerned with liquids or gases, recent research also focuses on the dynamics of deformable solids using SPH. In this paper, we present a novel corotational SPH formulation for deformable solids. The rigid body modes are extracted from the deformation field which allows to use a linear strain tensor. In contrast to previous rotationally invariant meshless approaches, we show examples using coplanar and collinear particle data sets. The presented approach further allows for a unified meshfree representation of deformable solids and fluids. This enables the animation of sophisticated phenomena, such as phase transitions. The versatility and the efficiency of the presented SPH scheme for deformable solids is illustrated in various experiments.


eurographics | 2014

SPH Fluids in Computer Graphics

Markus Ihmsen; Jens Orthmann; Barbara Solenthaler; Andreas Kolb; Matthias Teschner

Smoothed Particle Hydrodynamics (SPH) has been established as one of the major concepts for fluid animation in computer graphics. While SPH initially gained popularity for interactive free-surface scenarios, it has emerged to be a fully fledged technique for state-of-the-art fluid animation with versatile effects. Nowadays, complex scenes with millions of sampling points, oneand two-way coupled rigid and elastic solids, multiple phases and additional features such as foam or air bubbles can be computed at reasonable expense. This state-of-the-art report summarizes SPH research within the graphics community.


VRIPHYS | 2010

Boundary Handling and Adaptive Time-stepping for PCISPH

Markus Ihmsen; Nadir Akinci; Marc Gissler; Matthias Teschner

We present a novel boundary handling scheme for incompressible fluids based on Smoothed Particle Hydrodynamics (SPH). In combination with the predictive-corrective incompressible SPH (PCISPH) method, the boundary handling scheme allows for larger time steps compared to existing solutions. Furthermore, an adaptive time-stepping approach is proposed. The approach automatically estimates appropriate time steps independent of the scenario. Due to its adaptivity, the overall computation time of dynamic scenarios is significantly reduced compared to simulations with constant time steps.


The Visual Computer | 2012

Unified spray, foam and air bubbles for particle-based fluids

Markus Ihmsen; Nadir Akinci; Gizem Akinci; Matthias Teschner

We present a new model for diffuse material, i.e. water–air mixtures, that can be combined with particle-based fluids. Diffuse material is uniformly represented with particles which are classified into spray, foam and air bubbles. Physically motivated rules are employed to generate, advect and dissipate diffuse material. The approach is realized as a post-processing step which enables efficient processing and versatile handling. As interparticle forces and the influence of diffuse material onto the fluid are neglected, large numbers of diffuse particles are efficiently processed to realize highly detailed small-scale effects. The presented results show that our approach can significantly improve the visual realism of large-scale fluid simulations.


Computer Graphics Forum | 2012

Parallel Surface Reconstruction for Particle-Based Fluids

Gizem Akinci; Markus Ihmsen; Nadir Akinci; Matthias Teschner

This paper presents a novel method that improves the efficiency of high‐quality surface reconstructions for particle‐based fluids using Marching Cubes. By constructing the scalar field only in a narrow band around the surface, the computational complexity and the memory consumption scale with the fluid surface instead of the volume. Furthermore, a parallel implementation of the method is proposed. The presented method works with various scalar field construction approaches. Experiments show that our method reconstructs high‐quality surface meshes efficiently even on single‐core CPUs. It scales nearly linearly on multi‐core CPUs and runs up to fifty times faster on GPUs compared to the original scalar field construction approaches.


Computer Graphics Forum | 2014

IISPH-FLIP for incompressible fluids

Jens Cornelis; Markus Ihmsen; Andreas Peer; Matthias Teschner

We propose to use Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) for pressure projection and boundary handling in Fluid‐Implicit‐Particle (FLIP) solvers for the simulation of incompressible fluids. This novel combination addresses two issues of existing SPH and FLIP solvers, namely mass preservation in FLIP and efficiency and memory consumption in SPH. First, the SPH component enables the simulation of incompressible fluids with perfect mass preservation. Second, the FLIP component efficiently enriches the SPH component with detail that is comparable to a standard SPH simulation with the same number of particles, while improving the performance by a factor of 7 and significantly reducing the memory consumption. We demonstrate that the proposed IISPH‐FLIP solver can simulate incompressible fluids with a quantifiable, imperceptible density deviation below 0.1%. We show large‐scale scenarios with up to 160 million particles that have been processed on a single desktop PC using only 15GB of memory. One‐ and two‐way coupled solids are illustrated.


international conference on computer graphics and interactive techniques | 2015

An implicit viscosity formulation for SPH fluids

Andreas Peer; Markus Ihmsen; Jens Cornelis; Matthias Teschner

We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.

Collaboration


Dive into the Markus Ihmsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Band

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Arthur Wahl

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge