Markus J. Hofer
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus J. Hofer.
Neuropathology and Applied Neurobiology | 2010
Marcus Müller; Sally L. Carter; Markus J. Hofer; Iain L. Campbell
M. Müller, S. Carter, M. J. Hofer and I. L. Campbell (2010) Neuropathology and Applied Neurobiology36, 368–387 The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity – a tale of conflict and conundrum
Journal of Immunology | 2007
Marcus Müller; Sally L. Carter; Markus J. Hofer; Peter Manders; Daniel R. Getts; Meghan T. Getts; Angela Dreykluft; Bao Lu; Craig Gerard; Nicholas J. C. King; Iain L. Campbell
The chemokine receptor CXCR3 promotes the trafficking of activated T and NK cells in response to three ligands, CXCL9, CXCL10, and CXCL11. Although these chemokines are produced in the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), their role in the pathogenesis of CNS autoimmunity is unresolved. We examined the function of CXCR3 signaling in EAE using mice that were deficient for CXCR3 (CXCR3−/−). The time to onset and peak disease severity were similar for CXCR3−/− and wild-type (WT) animals; however, CXCR3−/− mice had more severe chronic disease with increased demyelination and axonal damage. The inflammatory lesions in WT mice consisted of well-demarcated perivascular mononuclear cell infiltrates, mainly in the spinal cord and cerebellum. In CXCR3−/− mice, these lesions were more widespread throughout the CNS and were diffused and poorly organized, with T cells and highly activated microglia/macrophages scattered throughout the white matter. Although the number of CD4+ and CD8+ T cells infiltrating the CNS were similar in CXCR3−/− and WT mice, Foxp3+ regulatory T cells were significantly reduced in number and dispersed in CXCR3−/− mice. The expression of various chemokine and cytokine genes in the CNS was similar in CXCR3−/− and WT mice. The genes for the CXCR3 ligands were expressed predominantly in and/or immediately surrounding the mononuclear cell infiltrates. We conclude that in EAE, CXCR3 signaling constrains T cells to the perivascular space in the CNS and augments regulatory T cell recruitment and effector T cell interaction, thus limiting autoimmune-mediated tissue damage.
Journal of Virology | 2007
Christie Wacher; Marcus Müller; Markus J. Hofer; Daniel R. Getts; Regina Zabaras; Shalina S. Ousman; Fulvia Terenzi; Ganes C. Sen; Nicholas J. C. King; Iain L. Campbell
ABSTRACT The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations. Expression of the ISG-54 gene also increased but to lower levels and with a more restricted distribution. Although expression of the ISG-49, ISG-54, and ISG-56 genes was increased in the brains of LCMV-infected STAT1 and STAT2 knockout (KO) mice, this was blunted, delayed, and restricted to the choroid plexus, meninges, and endothelium. ISG-56 protein was regulated in parallel with the corresponding RNA transcript in the brain during LCMV infection in wild-type and STAT KO mice. Similar changes in ISG-49, ISG-54, and ISG-56 RNA levels and ISG-56 protein levels were observed in the brains of wild-type mice following infection with WNV. Thus, the ISG-49, ISG-54, and ISG-56 genes are coordinately upregulated in the brain during LCMV and WNV infection; this upregulation, in the case of LCMV, was totally (neurons) or partially (non-neurons) dependent on the IFN-signaling molecules STAT1 and STAT2. These findings suggest a dominant role for the ISG-49, ISG-54, and ISG-56 genes in the host response to different viruses in the central nervous system, where, particularly in neurons, these genes may have nonredundant functions.
Journal of Immunology | 2009
Albert Quintana; Marcus Müller; Ricardo Frausto; Raquel Ramos; Daniel R. Getts; Elisenda Sanz; Markus J. Hofer; Marius Krauthausen; Nicholas J. C. King; Juan Hidalgo; Iain L. Campbell
IL-6 is crucial for the induction of many murine models of autoimmunity including experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. To establish the role of site-specific production of IL-6 in autoimmunity, we examined myelin oligodendrocyte glycoprotein immunization-induced EAE in transgenic mice (GFAP-IL6) with IL-6 production restricted to the cerebellum. Myelin oligodendrocyte glycoprotein-immunized (Mi-) GFAP-IL6 mice developed severe ataxia but no physical signs of spinal cord involvement, which was in sharp contrast to Mi-wild type (WT) animals that developed classical EAE with ascending paralysis. Immune pathology and demyelination were nearly absent from the spinal cord, but significantly increased in the cerebellum of Mi-GFAP-IL6 mice. Tissue damage in the cerebellum in the Mi-GFAP-IL6 mice was accompanied by increased total numbers of infiltrating leukocytes and increased proportions of both neutrophils and B-cells. With the exception of IL-17 mRNA, which was elevated in both control immunized and Mi-GFAP-IL6 cerebellum, the level of other cytokine and chemokine mRNAs were comparable with Mi-WT cerebellum whereas significantly higher levels of IFN-γ and TNF-α mRNA were found in Mi-WT spinal cord. Thus, site-specific production of IL-6 in the cerebellum redirects trafficking away from the normally preferred antigenic site the spinal cord and acts as a leukocyte “sink” that markedly enhances the inflammatory cell accumulation and disease. The mechanisms underlying this process likely include the induction of specific chemokines, activation of microglia, and activation and loss of integrity of the blood-brain barrier present in the cerebellum of the GFAP-IL6 mice before the induction of EAE.
Journal of Neuroinflammation | 2011
Jacque P.K. Ip; Aline L. Noçon; Markus J. Hofer; Sue Ling Lim; Marcus Müller; Iain L. Campbell
BackgroundLipocalin 2 (Lcn2) is a bacteriostatic factor that may also modulate cellular function, however, little is known concerning the expression or role of Lcn2 in CNS inflammation. Therefore, here we investigated the regulation and possible function of Lcn2 in the CNS following peripheral lipopolysaccharide (LPS) injection in mice.MethodsA murine model for systemic endotoxemia was used in this study. Wild type or Lcn2 KO mice (both genotypes C57BL/6 strain) were given either a single or dual, staggered intraperitoneal injections of purified E. coli LPS or vehicle alone. The brain was examined for the expression and location of Lcn2 mRNA and protein and various markers for neuroinflammation were analyzed.ResultsAlthough undetectable under physiological conditions, both Lcn2 mRNA and protein were induced to high levels in the brain after LPS injection. By contrast, RNA corresponding to the putative Lcn2 (termed 24p3R) receptor was present at high levels in the normal brain and remained unaltered by LPS injection. Differences between Lcn2 and 24p3R mRNA expression were found at the anatomic and cellular level. Endothelial cells, microglia and the choroid plexus but not neurons were identified as the main cellular sources for Lcn2 mRNA in the CNS. By contrast, 24p3R mRNA was detected in neurons and the choroid plexus only. Lcn2 protein was found to have a similar cellular localization as the corresponding RNA transcripts with the exception that subsets of neurons were also strongly positive. Various inflammatory, glial, and iron handling markers were analyzed and found to have similar alterations between WT and Lcn2 KO animals.Conclusions1) Lcn2 production is strongly induced in the CNS by systemic LPS injection, 2) in addition to Lcn2 production at key gateways of bacterial entry to the CNS, neurons may be a target for the actions of Lcn2, which is apparently taken up by these cells, and 3) the cellular functions of Lcn2 in the CNS remain enigmatic.
Journal of Neuroinflammation | 2012
Daniel R. Getts; Rachael L. Terry; Meghann Teague Getts; Marcus Müller; Sabita Rana; Celine Deffrasnes; Thomas Myles Ashhurst; Jane Radford; Markus J. Hofer; Shane R. Thomas; Iain L. Campbell; Nicholas J. C. King
Infiltration of Ly6Chi monocytes from the blood is a hallmark of viral encephalitis. In mice with lethal encephalitis caused by West Nile virus (WNV), an emerging neurotropic flavivirus, inhibition of Ly6Chi monocyte trafficking into the brain by anti-very late antigen (VLA)-4 integrin antibody blockade at the time of first weight loss and leukocyte influx resulted in long-term survival of up to 60% of infected mice, with subsequent sterilizing immunity. This treatment had no effect on viral titers but appeared to be due to inhibition of Ly6Chi macrophage immigration. Although macrophages isolated from the infected brain induced WNV-specific CD4+ T-cell proliferation, T cells did not directly contribute to pathology, but are likely to be important in viral control, as antibody-mediated T-cell depletion could not reproduce the therapeutic benefit of anti-VLA-4. Instead, 70% of infiltrating inflammatory monocyte-derived macrophages were found to be making nitric oxide (NO). Furthermore, aminoguanidine-mediated inhibition of induced NO synthase activity in infiltrating macrophages significantly prolonged survival, indicating involvement of NO in the immunopathology. These data show for the first time the therapeutic effects of temporally targeting pathogenic NO-producing macrophages during neurotropic viral encephalitis.
Molecular Psychiatry | 2001
U Allmang; Markus J. Hofer; S Herzog; Karl Bechter; Peter Staeheli
Borna disease virus (BDV) can induce neurological disease in animals.1,2 Since viral nucleic acid,3–5 infectious particles6–8 and antibodies recognizing BDV antigens9–11 were found at higher frequencies in psychiatric patients than in healthy controls, BDV is suspected to cause psychiatric disorders in humans. However, the human origin of these viruses has recently been questioned.12 To diagnose BDV infections, sera are usually analyzed for antiviral antibodies by indirect immunofluorescence (IFA) on virus-infected cells.9,10,13 This study reveals that the reactive antibodies in human sera mainly recognized the BDV phosphoprotein, whereas animal sera preferentially detected the viral nucleoprotein. Immunoglobulin (Ig) G in sera of experimentally or naturally infected animals bound to the viral antigen with high avidity, ie resisting 3 M urea, whereas reactive IgG in human sera did not. Longitudinal studies showed that reactive human antibodies persisted for many years without gaining high avidity for BDV antigens, indicating that they were probably not induced by BDV but rather by infection with an antigenically related microorganism of unknown identity or by exposure to other related immunogens.
The Journal of Infectious Diseases | 1999
Martin Czygan; Wiebke Hallensleben; Markus J. Hofer; Stefan Pollak; Christian Sauder; Thomas Bilzer; Ingmar Blümcke; Peter Riederer; Bernhard Bogerts; Peter Falkai; Markus J. Schwarz; Eliezer Masliah; Peter Staeheli; Frank T. Hufert; Klaus Lieb
To estimate the frequency of persistent Borna disease virus (BDV) infections of the human central nervous system and to determine which neuropsychiatric disorders might be associated with this viral infection, reverse transcription-nested polymerase chain reaction was used to screen a large collection of autopsy brain samples for the presence of BDV-specific nucleic acids. The presence of BDV RNA was found in 3 brains of persons with psychiatric symptoms and prominent hippocampal degeneration previously reported to be positive by others. However, no BDV RNA was detected in 86 randomly collected brains from persons with various psychiatric disorders, including schizophrenia, affective disorders, and Alzheimers disease, or from suicide victims or in 52 brains from healthy controls. Furthermore, no BDV-RNA was detected in 16 surgical brain samples from persons with epilepsy-associated hippocampal sclerosis. These results indicate that life-long persistent BDV infections are rare in humans and that such infections may be associated with certain forms of hippocampal degeneration.
Journal of Immunology | 2010
Sally L. Ellis; Vanessa Gysbers; Peter Manders; Wen Li; Markus J. Hofer; Marcus Müller; Iain L. Campbell
The IFN-γ–inducible chemokines CXCL9 and CXCL10 are implicated in the pathogenesis of T cell-mediated immunity in the CNS. However, in various CNS immune pathologies the cellular localization of these chemokines differs, with CXCL9 produced by macrophage/microglia whereas CXCL10 is produced by both macrophage/microglia and astrocytes. In this study, we determined the mechanism for the microglial cell-restricted expression of the Cxcl9 gene induced by IFN-γ. In cultured glial cells, the induction of the CXCL9 (in microglia) and CXCL10 (in microglia and astrocytes) mRNAs by IFN-γ was not inhibited by cycloheximide. Of various transcription factors involved with IFN-γ–mediated gene regulation, PU.1 was identified as a constitutively expressed NF in microglia but not in astrocytes. STAT1 and PU.1 bound constitutively to the Cxcl9 gene promoter in microglia, and this increased significantly following IFN-γ treatment with IFN regulatory factor-8 identified as an additional late binding factor. However, in astrocytes, STAT1 alone bound to the Cxcl9 gene promoter. STAT1 was critical for IFN-γ induction of both the Cxcl9 and Cxcl10 genes in microglia and in microglia and astrocytes, respectively. The small interfering RNA-mediated knockdown of PU.1 in microglia markedly impaired IFN-γ–induced CXCL9 but not STAT1 or IFN regulatory factor-8. Cells of the D1A astrocyte line showed partial reprogramming to a myeloid-like phenotype posttransduction with PU.1 and, in addition to the expression of CD11b, acquired the ability to produce CXCL9 in response to IFN-γ. Thus, PU.1 not only is crucial for the induction of CXCL9 by IFN-γ in microglia but also is a key determinant factor for the cell-specific expression of this chemokine by these myeloid cells.
PLOS ONE | 2013
Julian Zimmermann; Marius Krauthausen; Markus J. Hofer; Michael T. Heneka; Iain L. Campbell; Marcus Müller
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45high/CD11b+ population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.