Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Johnsson is active.

Publication


Featured researches published by Markus Johnsson.


Biophysical Journal | 2003

Liposomes, Disks, and Spherical Micelles: Aggregate Structure in Mixtures of Gel Phase Phosphatidylcholines and Poly(Ethylene Glycol)-Phospholipids

Markus Johnsson; Katarina Edwards

Poly(ethylene glycol) (PEG) decorated lipid bilayers are widely used in biomembrane and pharmaceutical research. The success of PEG-lipid stabilized liposomes in drug delivery is one of the key factors for the interest in these polymer/lipid systems. From a more fundamental point of view, it is essential to understand the effect of the surface grafted polymers on the physical-chemical properties of the lipid bilayer. Herein we have used cryo-transmission electron microscopy and dynamic light scattering to characterize the aggregate structure and phase behavior of mixtures of PEG-lipids and distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The PEG-lipids contain PEG of molecular weight 2000 or 5000. We show that the transition from a dispersed lamellar phase (liposomes) to a micellar phase consisting of small spherical micelles occurs via the formation of small discoidal micelles. The onset of disk formation already takes place at low PEG-lipid concentrations (<5 mol %) and the size of the disks decreases as more PEG-lipid is added to the lipid mixture. We show that the results from cryo-transmission electron microscopy correlate well with those obtained from dynamic light scattering and that the disks are well described by an ideal disk model. Increasing the temperature, from 25 degrees C to above the gel-to-liquid crystalline phase transition temperature for the respective lipid mixtures, has a relatively small effect on the aggregate structure.


Biophysical Journal | 1997

Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes

Katarina Edwards; Markus Johnsson; Göran Karlsson; Mats Silvander

Phospholipids with covalently attached poly(ethylene glycol) (PEG lipids) are commonly used for the preparation of long circulating liposomes. Although it is well known that lipid/PEG-lipid mixed micelles may form above a certain critical concentration of PEG-lipid, little is known about the effects of PEG-lipids on liposome structure and leakage at submicellar concentrations. In this study we have used cryogenic transmission electron microscopy to investigate the effect of PEG(2000)-PE on aggregate structure in preparations of liposomes with different membrane compositions. The results reveal a number of important aggregate structures not documented before. The micrographs show that enclosure of PEG-PE induces the formation of open bilayer discs at concentrations well below those where mixed micelles begin to form. The maximum concentration of PEG-lipid that may be incorporated without alteration of the liposome structure depends on the phospholipid chain length, whereas phospholipid saturation or the presence of cholesterol has little or no effect. The presence of cholesterol does, however, affect the shape of the mixed micelles formed at high concentrations of PEG-lipid. Threadlike micelles form in the absence of cholesterol but adapt a globular shape when cholesterol is present.


Chemistry and Physics of Lipids | 1998

Effects of PEG-lipids on permeability of phosphatidylcholine/cholesterol liposomes in buffer and in human serum.

Mats Silvander; Markus Johnsson; Katarina Edwards

The permeability of liposomal membranes was studied as a function of the amount of incorporated PEG-lipid. The fluorescent dyes ethidium, propidium and 5(6)-carboxy fluorescein were used as markers for measurements of spontaneous leakage. The results show that addition of up to 8 mol% of PEG(2000)-DSPE into liposomal membranes of DSPC/Cho and EPC/Cho reduces the permeability of carboxyfluorescein in buffer solution. In contrast, the leakage of the more amphiphilic dye ethidium was not to any measurable extent affected by PEG-lipid inclusion. Another important difference was that ethidum leakage showed a clear dependence on temperature whereas leakage of carboxyfluorescein from pegylated liposomes did not. We conclude that the mechanisms by which the two dyes permeate the liposomal bilayer are qualitatively different. Both ethidium and carboxyfluorescein did interact with human serum components in a way that made measurements in serum unreliable. The more hydrophilic ethidium analogue propidium was shown not to interact with human serum components to any detectable extent. This made propidium suitable for permeability determinations in human serum. It was found that liposomes composed of pure EPC or EPC with 5 mol% DSPE-PEG, displayed a dramatic increase in permeability when subjected to a medium composed of 20% human serum in buffer. Addition of 40 mol% cholesterol to the EPC bilayers reduced the observed release rate in human serum substantially, whereas no stabilizing effect was observed upon PEG-lipid inclusion.


Biophysical Journal | 2001

Phase Behavior and Aggregate Structure in Mixtures of Dioleoylphosphatidylethanolamine and Poly(Ethylene Glycol)-Lipids

Markus Johnsson; Katarina Edwards

Cryo-transmission electron microscopy has been used to investigate the phase behavior and aggregate structure in dilute aqueous mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-phospholipids (PEG-lipids). It is shown that PEG-lipids (micelle-forming lipids) induce a lamellar phase in mixtures with DOPE (inverted hexagonal forming lipid). The amount of PEG-lipid that is needed to induce a pure dispersed lamellar phase, at physiological conditions, depends on the size of the PEG headgroup. In the transition region between the inverted hexagonal phase and the lamellar phase, particles with dense inner textures are formed. It is proposed that these aggregates constitute dispersed cubic phase particles. Above bilayer saturating concentration of PEG-lipid, small disks and spherical micelles are formed. The stability of DOPE/PEG-lipid liposomes, prepared at high pH, against a rapid drop of the pH was also investigated. It is shown that the density of PEG-lipid in the membrane, sufficient to prevent liposome aggregation and subsequent phase transition, depends on the size of the PEG headgroup. Below a certain density of PEG-lipid, aggregation and phase transition occurs, but the processes involved proceed relatively slow, over the time scale of weeks. This allows detailed studies of the aggregate structure during membrane fusion.


Journal of Liposome Research | 1999

Optimization of Drug Loading Procedures and Characterization of Liposomal Formulations of Two Novel Agents Intended for Boron Neutron Capture Therapy (BNCT)

Markus Johnsson; Nill Bergstrand; Katarina Edwards

The characterization of two liposomal formulations of boronated DNA-interacting agents has been performed. It is shown that the two boronated drugs, WSA-Water Soluble Acridine and WSP-Water Soluble ...


British Journal of Clinical Pharmacology | 2015

Octreotide s.c. depot provides sustained octreotide bioavailability and similar IGF‐1 suppression to octreotide LAR in healthy volunteers

Fredrik Tiberg; John Roberts; Camilla Cervin; Markus Johnsson; Severine Sarp; Anadya Prakash Tripathi; Margareta Linden

Aims The aim was to assess the pharmacokinetics, pharmacodynamics, safety and tolerability of octreotide subcutaneous (s.c.) depot, a novel octreotide formulation. Methods This was a phase I, randomized, open label study. After a single dose of octreotide immediate release (IR) 200 µg, subjects were randomized to one of eight groups to receive three monthly injections of octreotide s.c. depot A 10, 20 or 30 mg, B 30 mg, C 10, 20 or 30 mg or long acting octreotide (octreotide LAR) 30 mg. Results One hundred and twenty-two subjects were randomized. For all depot variants, onset of octreotide release was rapid and sustained for up to 4 weeks. The relative octreotide bioavailability of depot variants vs. octreotide IR ranged from 0.68 (90% confidence interval [CI] 0.61, 0.76) to 0.91 (90% CI 0.81, 1.02) and, vs. octreotide LAR, was approximately four- to five-fold greater: 3.97 (90% CI 3.35, 4.71) to 5.27 ng ml–1 h (90% CI 4.43, 6.27). All depot variants showed relatively rapid initial reductions of insulin-like growth factor 1 (IGF-1) compared with octreotide LAR. A trend of octreotide dose dependence was also indicated from the plasma concentrations and suppression of IGF-1. Maximum inhibition of IGF-1 at steady-state was highest for depot B and C. All depot treatments were well tolerated. The most frequent adverse events were gastrointestinal related. Conclusions Octreotide s.c. depot provides greater octreotide bioavailability with a more rapid onset and stronger suppression of IGF-1 than octreotide LAR in healthy volunteers.


Archive | 2010

Controlled-release formulations

Markus Johnsson; Fredrik Tiberg; Catalin Nistor


Nano Letters | 2005

Self-assembled lipid superstructures: Beyond vesicles and liposomes

Justas Barauskas; Markus Johnsson; Fredrik Tiberg


Langmuir | 2005

Cubic phase nanoparticles (Cubosome): Principles for controlling size, structure, and stability

Justas Barauskas; Markus Johnsson; Fredrik Joabsson; Fredrik Tiberg


Journal of the American Chemical Society | 2003

Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH.

Markus Johnsson; and Anno Wagenaar; Jan B. F. N. Engberts

Collaboration


Dive into the Markus Johnsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge