Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Keiser is active.

Publication


Featured researches published by Markus Keiser.


Drug Metabolism and Disposition | 2010

Hepatic Uptake of the Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA: Role of Human Organic Anion Transporters

Mirko Leonhardt; Markus Keiser; Stefan Oswald; Jp Kühn; Jia Jia; Markus Grube; Heyo K. Kroemer; Werner Siegmund; Werner Weitschies

Contrast-enhancing magnetic resonance imaging with the liver-specific agent gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) has been shown to improve the detection rate of focal lesions. There is evidence from preclinical studies that multidrug organic anion transporters are involved in hepatic uptake of Gd-EOB-DTPA. Therefore, we evaluated affinity of the contrast agent to human organic anion-transporting polypeptides (OATP1B1, OATP1B3, OATP2B1) and to the Na+/taurocholate cotransporting polypeptide (NTCP) using stable transfected human embryonic kidney (HEK) 293 cells. In competition assays, Gd-EOB-DTPA inhibited the uptake of bromosulfophthalein (BSP) by OATP1B1 (IC50 = 0.6 mM) and OATP1B3 (IC50 = 0.4 mM). In comparison, the IC50 values for rifampicin were 11.9 (OATP1B1), 1.4 (OATP1B3), and 80.5 μM (OATP2B1), respectively. Uptake of BSP by OATP2B1, uptake of taurocholic acid by NTCP, and viability of all HEK cells were not influenced by Gd-EOB-DTPA in concentrations up to 10 mM. In uptake assays using a new liquid chromatography-tandem mass spectrometry method for quantification, Gd-EOB-DTPA was a substrate for OATP1B1 (Km = 0.7 mM, Vmax = 10.5 pmol/mg × min), OATP1B3 (Km = 4.1 mM, Vmax = 22.7 pmol/mg × min), and NTCP (Km = 0.04 mM, Vmax = 1.4 pmol/mg × min). The uptake by OATP2B1 was not different from the vector control. In conclusion, Gd-EOB-DTPA is a substrate of the liver-specific OATP1B1, OATP1B3, and NTCP.


Radiology | 2012

Visualization of Hepatic Uptake Transporter Function in Healthy Subjects by Using Gadoxetic Acid–enhanced MR Imaging

A Nassif; Jia Jia; Markus Keiser; Stefan Oswald; Christiane Modess; Stefan Nagel; Werner Weitschies; Norbert Hosten; Werner Siegmund; Jens-Peter Kühn

PURPOSE To determine if genetic polymorphisms of liver-specific human organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 influence cellular uptake of gadoxetic acid in vitro and if functionally relevant polymorphisms are confounders for liver enhancement by gadoxetic acid in healthy subjects. MATERIALS AND METHODS This study received ethics approval, and all subjects provided written informed consent. Cellular uptake of gadoxetic acid by OATP1B1 and OATP1B3 and their frequent genetic variants was measured by using stable transfected embryonic kidney HEK293 cells. Liver signal intensity at gadoxetic acid-enhanced MR imaging and pharmacokinetics of gadoxetic acid were evaluated in 36 healthy carriers of SLCO1B1/1B3 wild-type alleles (n = 10), SLCO1B1*1b/*1b (n = 8), SLCO1B1*15/*15 (n = 7), SLCO1B1*5/*15 (n = 1), SLCO1B1*1a/*5 (n = 6), and SLCO1B3*4/*4 (n = 4) by using T1-weighted MR imaging and liquid chromatography tandem mass spectrometry. RESULTS Transport activity for gadoxetic acid was increased in cells transfected with SLCO1B1c.388A>G (12.8 pmol/[mg·min]6 3.53, P = .001) but decreased in cells with SLCO1B1c.388A>G/521T>C (3.11 pmol/[mg·min] ± 0.918, P = .004) compared with cells with nonvariant transporter (6.32 pmol/[mg·min] ± 2.73). Compared with activity of cells transfected with the nonvariant SLCO1B3 (7.43 pmol/[mg·min] ± 2.43), SLCO1B3c.699G>A was a gain-of-function variant (15.1 pmol/[mg·min] ± 5.52, P = .002), whereas SLCO1B3c.334T>G (0.364 pmol/[mg·min] ± 0.125, P = .0001) and SLCO1B3c.1564G>T (0.295 pmol/[mg·min] ± 0.247, P = .0001) were variants with lower function. Liver enhancement with gadoxetic acid was reduced in subjects with OATP1B1*1a/*5 compared with wild-type subjects and those with OATP1B1*1b/*1b (area under enhancement curve, 3-480 minutes in arbitrary units [au]; 20.7 au ± 6.85 vs 36.5 au ± 8.08 [P = .006] vs 34.6 au ± 8.92 [P = .026]). The OATP1B3*4 polymorphism was not of functional relevance. No pharmacokinetic characteristics of gadoxetic acid were influenced by genetic polymorphisms of OATP1B1 and OATP1B3. CONCLUSION Liver-specific OATP1B1 and OATP1B3 are uptake carriers for gadoxetic acid in subjects. Genetic polymorphisms of OATP1B1 are signal confounders in gadoxetic acid-enhanced liver MR imaging.


Biochemical Pharmacology | 2010

Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1.

Kathrin Mandery; Krystyna Bujok; Ingrid Schmidt; Markus Keiser; Werner Siegmund; Bettina Balk; Jörg König; Martin F. Fromm; Hartmut Glaeser

OATP1A2 and OATP2B1 are uptake transporters of the human organic anion transporting polypeptide (OATP) family with a broad substrate spectrum including several endogenous compounds as well as drugs such as the antihistaminic drug fexofenadine and HMG-CoA reductase inhibitors. Both transporters are localized in the apical membrane of human enterocytes. Flavonoids, abundantly occurring in plants, have previously been shown to interact with drug metabolizing enzymes and transporters. However, the impact of flavonoids on OATP1A2 and OATP2B1 transport function has not been analyzed in detail. Therefore, HEK293 cell lines stably expressing OATP1A2 and OATP2B1 were used to investigate the influence of the Ginkgo flavonoids apigenin, kaempferol, and quercetin on the transport activity of OATP1A2 and OATP2B1. K(i) values of all three flavonoids determined from Dixon plot analyses using BSP as substrate indicated a competitive inhibition with quercetin as the most potent inhibitor of OATP1A2 (22.0μM) and OATP2B1 (8.7μM) followed by kaempferol (OATP1A2: 25.2μM, OATP2B1: 15.1μM) and apigenin (OATP1A2: 32.4μM OATP2B1: 20.8μM). Apigenin, kaempferol, and quercetin led to a concentration-dependent decrease of the OATP1A2-mediated fexofenadine transport with IC(50) values of 4.3μM, 12.0μM, and 12.6μM, respectively. The OATP1A2- and OATP2B1-mediated transport of atorvastatin was also efficiently inhibited by apigenin (IC(50) for OATP1A2: 9.3μM, OATP2B1: 13.9μM), kaempferol (IC(50) for OATP1A2: 37.3μM, OATP2B1: 20.7μM) and quercetin (IC(50) for OATP1A2: 13.5μM, OATP2B1: 14.1μM). These data indicate that modification of OATP1A2 and OATP2B1 transport activity by apigenin, kaempferol, and quercetin may be a mechanism for food-drug or drug-drug interactions in humans.


Molecular Pharmaceutics | 2012

Pharmaceutical excipients influence the function of human uptake transporting proteins.

Anett Engel; Stefan Oswald; Werner Siegmund; Markus Keiser

Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17β-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies.


Investigative Radiology | 2014

Characterization of the intestinal and hepatic uptake/efflux transport of the magnetic resonance imaging contrast agent gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid.

Jia Jia; Dorothee Puls; Stefan Oswald; Gabriele Jedlitschky; Jp Kühn; Werner Weitschies; Norbert Hosten; Werner Siegmund; Markus Keiser

ObjectivesThe objectives of the study were to measure the pharmacokinetics and liver enhancement of gadoxetate (gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid [Gd-EOB-DTPA], Eovist, Primovist) after oral and intravenous administration in wild-type and (multidrug resistance–associated protein 2) Mrp2-deficient rats and to evaluate the in vitro transport of the contrast agent via intestinal and hepatic transporter proteins. Materials and MethodsGadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid–enhanced magnetic resonance imaging and pharmacokinetics of Gd-EOB-DTPA after intravenous and oral administration were evaluated in wild-type and Mrp2-deficient rats using T1-weighted magnetic resonance imaging and a validated liquid chromatography–mass spectrometry method, respectively. Cellular uptake of Gd-EOB-DTPA was measured in stably transfected human embrionic kidney 293-cells expressing oragnic anion-transporting polypeptide 1A2 or organic cation transporter 3 and Madin Darby canine kidney 2-cells expressing apical sodium dependent bile acid transporter. The affinity to MRP2 and multidrug resistance–associated protein 3 was measured using inside-out vesicles. ResultsIn vitro, Gd-EOB-DTPA was demonstrated to be a substrate for OATP1A2 (mean [SD] of the Michaelis-Menten constant [Km], 1.0 [0.4] mmol/L; mean [SD] of the maximal uptake rate [Vmax], 101.3 [21.1] pmol/mg per minute), MRP2 (Km, 1.0 [0.5] mmol/L; Vmax, 86.8 [31.1] pmol/mg per minute), and multidrug resistance–associated protein 3 (Km, 1.8 [0.3] mmol/L; Vmax, 116 [15.9] pmol/mg per minute) but not for the apical sodium-dependent bile acid transporter and organic cation transporter 3. After the oral administration to the wild-type animals, Gd-EOB-DTPA was considerably absorbed from the small intestine (bioavailability, approximately 17%) and predominately eliminated via feces after intravenous dosing (approximately 96%). In the Mrp2-deficient rats, oral bioavailability increased to approximately 21% and Gd-EOB-DTPA was exclusively excreted into urine. Magnetic resonance enhancement of the liver was significantly prolonged in the Mrp2-deficient rats compared with the wild-type rats (mean [SD] area under the curve0-90, 36.4 [8.5] vs 14.8 [10.3] arbitary units per minute; P = 0.003; time to maximum plasma concentration, 48.6 [23.8] vs 6.0 [3.1] minutes; P = 0.001). ConclusionsThe nonmetabolized Gd-EOB-DTPA may have some potentials to be used as a probe-contrast agent to evaluate transporter-mediated mechanisms along the enterohepatic absorption route for drugs by functional visualization in vivo.


Drug Metabolism and Disposition | 2011

Role of Organic Anion-Transporting Polypeptides for Cellular Mesalazine (5-Aminosalicylic Acid) Uptake

Jörg König; Hartmut Glaeser; Markus Keiser; Kathrin Mandery; Ulrich Klotz; Martin F. Fromm

The therapeutic effects and metabolism of mesalazine (5-aminosalicylic acid) in patients with inflammatory bowel disease require intracellular accumulation of the drug in intestinal epithelial cells and hepatocytes. The molecular mechanisms of mesalazine uptake into cells have not been characterized so far. Using human embryonic kidney cells stably expressing uptake transporters of the organic anion-transporting polypeptide (OATP) family, which are expressed in human intestine and/or liver, we found that mesalazine uptake is mediated by OATP1B1, OATP1B3, and OATP2B1 but not by OATP1A2 and OATP4A1. Moreover, genetic variations (*1b, *5, *15) in the SLCO1B1 gene encoding OATP1B1 reduced the Km value for mesalazine uptake from 55.1 to 16.3, 24.3, and 32.4 μM, respectively, and the respective Vmax values. Finally, budesonide, cyclosporine, and rifampin were identified as inhibitors of OATP1B1-, OATP1B3-, and OATP2B1-meditated mesalazine uptake. These in vitro data indicate that OATP-mediated uptake and its modification by genetic factors and comedications may play a role for mesalazine effects.


Clinical Pharmacology & Therapeutics | 2010

Pharmacokinetic and Pharmacodynamic Interactions Between the Immunosuppressant Sirolimus and the Lipid-Lowering Drug Ezetimibe in Healthy Volunteers

Stefan Oswald; A Nassif; Christiane Modess; Markus Keiser; Ulrike Hanke; A Engel; Dieter Lütjohann; Werner Weitschies; Werner Siegmund

Organ transplant recipients who have dyslipidemia related to immunosuppression may benefit from cholesterol‐lowering therapy with ezetimibe, a substrate of ABCB1, ABCC2, and OATP1B1. Adverse pharmacokinetic interactions are hypothesized with sirolimus, which is a substrate of OATP1B1 and OATP1B3 and an inhibitor of ABCB1, OATP1B1, and OATP1B3 but not of ABCC2. However, competition between sirolimus and ezetimibe for ABCB1 and OATP1B1 is not of major clinical relevance, as confirmed in our randomized, controlled, single‐dose study in healthy subjects.


Clinical Pharmacology & Therapeutics | 2012

Impact of Efavirenz on Intestinal Metabolism and Transport: Insights From an Interaction Study With Ezetimibe in Healthy Volunteers

Stefan Oswald; H E Meyer zu Schwabedissen; A Nassif; Christiane Modess; Zeruesenay Desta; Evan T. Ogburn; J Mostertz; Markus Keiser; Jia Jia; A Hubeny; A Ulrich; D Runge; M Marinova; Dieter Lütjohann; Heyo K. Kroemer; Werner Siegmund

Hypercholesterolemia frequently occurs in patients treated with efavirenz who cannot be treated adequately with statins because of drug interactions. These patients may benefit from cholesterol‐lowering therapy with ezetimibe. This study determined the influence of single‐dose and multiple‐dose efavirenz (400 mg/day for 9 days) on the pharmacokinetics and sterol‐lowering of ezetimibe (10 mg) in 12 healthy subjects. In addition, the influence of efavirenz on genome‐wide intestinal expression and in vitro function of ABCB1, ABCC2, UGT1A1, and OATP1B1 was studied. Efavirenz (multiple dose) had no influence on the pharmacokinetics and lipid‐lowering functions of ezetimibe. Intestinal expression of enzymes and transporters (e.g., ABCB1, ABCC2, and UGT1A1) was not affected by chronic efavirenz. Efavirenz (single dose) slightly increased ezetimibe absorption and markedly decreased exposure to ezetimibe‐glucuronide (single dose and multiple dose), which may be explained by inhibition of UGT1A1 and ABCB1 (in vitro data). Ezetimibe had no effect on the disposition of efavirenz. Consequently, ezetimibe may be a safe and efficient therapeutic option in patients with HIV infection.


Molecular Pharmaceutics | 2015

Expression of Drug Transporters and Drug Metabolizing Enzymes in the Bladder Urothelium in Man and Affinity of the Bladder Spasmolytic Trospium Chloride to Transporters Likely Involved in Its Pharmacokinetics

Maria Bexten; Stefan Oswald; Markus Grube; Jia Jia; Tanja Graf; Uwe Zimmermann; Kathrin Rodewald; Oliver Zolk; Ulrich Schwantes; Werner Siegmund; Markus Keiser

The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.


Clinical Pharmacology & Therapeutics | 2011

Drug Interactions Between the Immunosuppressant Tacrolimus and the Cholesterol Absorption Inhibitor Ezetimibe in Healthy Volunteers

Stefan Oswald; A Nassif; Christiane Modess; Markus Keiser; A Ulrich; D Runge; Ulrike Hanke; Dieter Lütjohann; A Engel; Werner Weitschies; Werner Siegmund

Immunosuppressive therapy is frequently associated with hypercholesterolemia, calling for lipid‐lowering treatment without adverse drug interactions. One option is treatment with the cholesterol absorption inhibitor ezetimibe. We have shown in vitro that ezetimibe and tacrolimus may interact in competition for intestinal UGT1A1 and ABCB1 at concentrations reached in gut lumen after oral administration. However, this clinical study in healthy volunteers showed that the expected pharmacokinetic interaction between ezetimibe and tacrolimus is not of clinical relevance.

Collaboration


Dive into the Markus Keiser's collaboration.

Top Co-Authors

Avatar

Stefan Oswald

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Jia

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Markus Grube

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

A Nassif

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Runge

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge