Markus Klose
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Klose.
Nano Letters | 2008
Nadja C. Bigall; Thomas Härtling; Markus Klose; Paul Simon; Lukas M. Eng; Alexander Eychmüller
We present a facile and reproducible method for synthesizing monodisperse platinum (Pt) spheres with sizes ranging from 10 to 100 nm in diameter and exceptionally small standard deviations of 3% for large spheres. The reaction takes place in aqueous solution using a multistep seed-mediated approach. The Pt nanospheres consist of several small crystallites resulting in a surface roughness of 5-10 nm. Extinction spectra are measured from particles dispersed in water and calculated for single particles which are found to be in excellent agreement. We obtain a linear correlation between the plasmon extinction maximum (from UV to the visible regions) and the particle diameter which might be of value for experimentalists in the field.
ACS Applied Materials & Interfaces | 2014
Katja Pinkert; Martin Oschatz; Lars Borchardt; Markus Klose; Martin Zier; Winfried Nickel; Lars Giebeler; Steffen Oswald; Stefan Kaskel; Juergen Eckert
Ordered mesoporous carbide-derived carbon (OM-CDC) with a specific surface area as high as 2900 m(2) g(-1) was used as a model system in a supercapacitor setup based on an ionic liquid (IL; 1-ethyl-3-methylimidazolium tetrafluoroborate) electrolyte. Our study systematically investigates the effect of surface functional groups on IL-based carbon supercapacitors. Oxygen and chlorine functionalization was achieved by air oxidation and chlorine treatment, respectively, to introduce well-defined levels of polarity. The latter was analyzed by means of water physisorption isotherms at 298 K, and the functionalization level was quantified with X-ray photoelectron spectroscopy. While oxygen functionalization leads to a decreased capacitance at higher power densities, surface chlorination significantly improves the rate capability. A high specific capacitance of up to 203 F g(-1) was observed for a chlorinated OM-CDC sample with a drastically increased rate capability in a voltage range of ±3.4 V.
Journal of Materials Chemistry | 2016
M. Madian; Markus Klose; Tony Jaumann; Annett Gebert; Steffen Oswald; N. Ismail; Alexander Eychmüller; J. Eckert; Lars Giebeler
Developing novel electrode materials is a substantial issue to improve the performance of lithium ion batteries. In the present study, single phase Ti–Sn alloys with different Sn contents of 1 to 10 at% were used to fabricate Ti–Sn–O nanotubes via a straight-forward anodic oxidation step in an ethylene glycol-based solution containing NH4F. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. Our results reveal the successful formation of mixed TiO2/SnO2 nanotubes in the applied voltage range of 10–40 V. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage which turns Ti–Sn–O nanotubes into highly attractive materials for various applications. As an example, the Ti–Sn–O nanotubes offer promising properties as anode materials in lithium ion batteries. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at a current density of 504 μA cm−2. The results demonstrate that TiO2/SnO2 nanotubes prepared at 40 V on a TiSn1 alloy substrate display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. This electrode was tested at current densities of 50, 100, 252, 504 and 1008 μA cm−2 exhibiting average capacities of 780, 660, 490, and 405 μA cm−2 (i.e. 410, 345, 305 and 212 mA h g−1), respectively. The remarkably improved electrochemical performance is attributed to enhanced lithium ion diffusion which originates from the presence of SnO2 nanotubes and the high surface area of the mixed oxide tubes. The TiO2/SnO2 electrodes retain their original tubular structure after electrochemical cycling with only slight changes in their morphology.
The EMBO Journal | 2017
Carlos Andrés Chacón‐Martínez; Markus Klose; Catherin Niemann; Ingmar Glauche; Sara A. Wickström
Understanding how complex tissues are formed, maintained, and regenerated through local growth, differentiation, and remodeling requires knowledge on how single‐cell behaviors are coordinated on the population level. The self‐renewing hair follicle, maintained by a distinct stem cell population, represents an excellent paradigm to address this question. A major obstacle in mechanistic understanding of hair follicle stem cell (HFSC) regulation has been the lack of a culture system that recapitulates HFSC behavior while allowing their precise monitoring and manipulation. Here, we establish an in vitro culture system based on a 3D extracellular matrix environment and defined soluble factors, which for the first time allows expansion and long‐term maintenance of murine multipotent HFSCs in the absence of heterologous cell types. Strikingly, this scheme promotes de novo generation of HFSCs from non‐HFSCs and vice versa in a dynamic self‐organizing process. This bidirectional interconversion of HFSCs and their progeny drives the system into a population equilibrium state. Our study uncovers regulatory dynamics by which phenotypic plasticity of cells drives population‐level homeostasis within a niche, and provides a discovery tool for studies on adult stem cell fate.
Chemistry: A European Journal | 2016
Laura Kühn; Anne-Kristin Herrmann; Bogdan Rutkowski; Mehtap Oezaslan; Maarten Nachtegaal; Markus Klose; Lars Giebeler; Nikolai Gaponik; J. Eckert; Thomas J. Schmidt; Aleksandra Czyrska-Filemonowicz; Alexander Eychmüller
The atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles. The assembly of Au and Pd nanoparticles resulted in a Pd-shell formation around the Au particles. This work confirms that bimetallic aerogels are subject to reorganization processes during their gel formation.
Zeitschrift für Physikalische Chemie | 2011
Christoph Ziegler; Markus Klose; Sergei V. Voitekhovich; Nikolai Gaponik; Alexander Eychmüller
Abstract In this work we present a simple method to obtain silver sols stabilized by tetrazole derivatives. The well established metal precursor silver nitrate and the reductant sodium borohydride have been combined with 5-R-tetrazoles (R=CH3, NH2) acting as stabilizing ligands. Depending on the utilized tetrazole, different agglomeration kinetics could be observed. Long term stability and agglomeration processes have been in situ investigated by the use of UV/Vis- and Raman-spectroscopy.
Systems & Control Letters | 2015
Thai Son Doan; Anke Kalauch; Markus Klose; Stefan Siegmund
Abstract We provide sufficient criteria for the stability of positive linear switched systems on ordered Banach spaces. The switched systems can be generated by finitely many bounded operators in infinite-dimensional spaces with a general class of order-inducing cones. In the discrete-time case, we assume an appropriate interior point of the cone, whereas in the continuous-time case an appropriate interior point of the dual cone is sufficient for stability. This is an extension of the concept of linear Lyapunov functions for positive systems to the setting of infinite-dimensional partially ordered spaces. We illustrate our results with examples.
bioRxiv | 2018
Markus Klose; Maria Carolina Florian; Hartmut Geiger; Ingmar Glauche
The prevailing view on murine hematopoiesis and on hematopoietic stem cells (HSC) in particular derives from experiments that are related to regeneration after irradiation and HSC transplantation. However, over the past years, different experimental techniques have been developed to investigate hematopoiesis under homeostatic conditions, thereby providing access to proliferation and differentiation rates of hematopoietic stem and progenitor cells in the unperturbed situation. Moreover, it has become clear that hematopoiesis undergoes distinct changes during aging with large effects on HSC abundance, lineage contribution, asymmetry of division and self-renewal potential. However, it is currently not fully resolved how stem and progenitor cells interact to respond to varying demands and how this balance is altered by an aging-induced shift in HSC polarity. Here, we present an in-silico model to investigate the dynamics of HSC response to varying demand. By introducing an internal feedback between stem and progenitor cells, the model is suited to consistently describe both hematopoietic homeostasis and regeneration, including the limited regulation of HSCs in the homeostatic situation. The model further explains the age-dependent increase in phenotypic HSCs as a consequence of the cells’ inability to preserve divisional asymmetry. Our model suggests a dynamically regulated population of intrinsically asymmetrically dividing HSCs as suitable control mechanism that adheres with many qualitative and quantitative findings on hematopoietic recovery after stress and aging. The modeling approach thereby illustrates how a mathematical formalism can support the conceptual and the quantitative understanding of regulatory principles in HSC biology.
PLOS Biology | 2018
M.Carolina Florian; Markus Klose; Mehmet Sacma; Jelena Jablanovic; Luke Knudson; Kalpana Nattamai; Gina Marka; Angelika Vollmer; Karin Soller; Vadim Sakk; Nina Cabezas-Wallscheid; Yi Zheng; Medhanie A. Mulaw; Ingmar Glauche; Hartmut Geiger
Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate—using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)—that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells.
Advanced Functional Materials | 2015
Juan Balach; Tony Jaumann; Markus Klose; Steffen Oswald; J. Eckert; Lars Giebeler