Markus Knipp
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Knipp.
Free Radical Biology and Medicine | 1998
Mark A. Smith; Milan Vašák; Markus Knipp; Rudy J. Castellani; George Perry
In this study, we show that dimethylargininase, a zinc protein involved in the regulation of nitric oxide synthase, is specifically elevated in neurons displaying cytoskeletal abnormalities and oxidative stress in Alzheimer disease (AD) while none of this enzyme was found in neurons in age-matched control cases. Seen in the context of earlier studies showing widespread nitric oxide related damage in AD and the role of dimethylargininase to activate nitric oxide synthetase, through catalytic removal of its endogenous inhibitors, these findings indicate major alterations in nitric oxide regulation in AD. Further, that low levels of zinc specifically inhibit dimethylargininase may provide a link between the numerous studies showing specific abnormalities in zinc and oxidative stress. Finally, our results provide additional evidence that oxidative stress- and nitric oxide-mediated events play important roles in the pathogenesis of AD.
Journal of Biological Chemistry | 2003
Markus Knipp; Oliver Braun; Peter Gehrig; Ragna Sack; Milan Vašák
The endogenous nitric oxide synthase inhibitorsl-N ω-methylarginine andl-N ω,N ω-dimethylarginine are catabolized by the enzyme dimethylargininase. Dimethylargininase-1 from bovine brain contains one tightly bound Zn(II) coordinated by two cysteine sulfur and two lighter ligands. Activity measurements showed that only the apo-enzyme is active and that the holo-enzyme is activated by zinc removal. In this work, the effect of NO on dimethylargininase-1 structure and its activity was investigated using 2-(N,N-dimethylamino)-diazenolate-2-oxide as an NO source. The results showed that whereas the holo-form was resistant to S-nitrosylation, the apo-form could be modified. The results of absorption spectroscopy, mass spectrometry, and fluorometric S-NO quantification revealed that two of five cysteine residues reacted with NO yielding cysteine-S-NO. The modification reaction is specific, because by liquid chromatography/mass spectrometry experiments of digested S-NO-dimethylargininase-1, cysteines 221 and 273 could be identified as cysteine-NO. Because Zn(II) protects the enzyme against nitrosation, it is suggested that both cysteines are involved in metal binding. However, specific cysteine-S-NO formation occurred in the absence of a characteristic sequence motif. Based on a structural model of dimethylargininase-1, the activation of both cysteines may be accomplished by the close proximity of charged residues in the tertiary structure of the enzyme.
Biochemistry | 2010
Chunmao He; Hideaki Ogata; Markus Knipp
The interaction of ferriheme proteins with nitrite has recently attracted interest as a source for NO or other nitrogen oxides in mammalian physiology. However, met-hemoglobin (metHb), which was suggested as a key player in this process, does not convert nitrite unless small amounts of NO are added in parallel. We have recently reported that, in contrast, nitrophorins (NPs) convert nitrite as the sole substrate to form NO even at pH 7.5, which is an unprecedented case among ferrihemes [He, C., and Knipp, M. (2009) J. Am. Chem. Soc. 131, 12042-12043]. NPs, which comprise a class of unique heme b proteins from the saliva of the blood-sucking insect Rhodnius prolixus, appear in a number of concomitant isoproteins. Herein, the first spectroscopic characterization of the initial complexes of the two isoproteins NP4 and NP7 with nitrite is presented and compared to the data reported for metHb and met-myoglobin (metMb). Because upon nitrite binding, NPs, in contrast to metHb and metMb, continue to react with nitrite, resonance Raman spectroscopy and continuous wave electron paramagnetic resonance spectroscopy were applied to frozen samples. As a result, the existence of two six-coordinate ferriheme low-spin complexes was established. Furthermore, X-ray crystallography of NP4 crystals soaked with nitrite revealed the formation of an eta(1)-N nitro complex, which is in contrast to the eta(1)-O-bound nitrite in metMb and metHb. Stopped-flow kinetic experiments show that although the ligand dissociation constants of NP4 and NP7 (15-190 M(-1)) are comparable to those of metHb and metMb, the rates of ligand binding and release are significantly slower. Moreover, not only the reaction kinetics but also electron paramagnetic resonance spectroscopy reveals notable differences between the two isoproteins.
Iubmb Life | 2011
Markus Knipp; Chunmao He
Nitrophorins (NPs) comprise a unique class of heme proteins used by the blood‐sucking insect Rhodnius prolixus to deliver the signaling gas molecule NO into the blood vessel of a host during feeding. Upon NO release, histamine can be scavenged by coordination to the heme iron. Although the protein is of similar size as the mammalian globin monomers and shares the same cofactor and proximal histidine coordination, nitrophorin structure, in contrast, is almost entirely composed of a β‐barrel. Comparison of the NO and histamine association constants with the concentrations of both compounds invivo raises concerns about the very simple ligand release model in case of at least some of the NPs. Therefore, novel functionalities of the NPs were sought. As a result, catalysis of the nitrite disproportionation reaction was found, which leads to the formation of NO with nitrite as the sole substrate. This is the first example of a ferriheme protein that can perform this reaction. Furthermore, although NPs stabilize the ferriheme state, a peroxidase reactivity of the cofactor involving the higher oxidation state iron (Compound I/II) was studied with the potential to catalyze the oxidation of histamine and norepinephrine. In contrast to many other heme proteins including the globins, the ferroheme state was found to be extremely sensitive to O2, which is a consequence of the much lower reduction potential of the NPs, so that the 1‐electron reduction of O2 to O •−2 becomes a thermodynamically favored process. Altogether, the detailed study of the NPs gives insight into the structure‐function relationships required for the targeted delivery of diatomic gas molecules in biology. Moreover, the comparison of the structure‐function relationships of the NPs (NO transporters) with those of the globins (O2 transporters) will help to elucidate the architectural requirement for the respective tasks.
Journal of the American Chemical Society | 2009
Chunmao He; Markus Knipp
Recently, the conversion of nitrite into NO by certain heme proteins, in particular hemoglobin, gained much interest as a physiologically important source of NO in human tissue. However, in an aqueous environment, nitrite reduction at an iron porphyrin occurs either through oxidation of ferroheme to ferriheme or with the assistance of a second substrate molecule. Here we report on the reduction of nitrite in the absence of a second substrate at the heme center of the ferriheme protein nitrophorin 7 (NP7) resulting in the formation of NO and restoration of the ferriheme center. The product was spectroscopically characterized, in particular by resonance Raman and FT-IR spectroscopy. Performing the reaction in the presence of the NO trap 2-(4-trimethylammonio)phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (TMA-PTIO) revealed that continuous NO production is possible, i.e., that NP7 is fully restored upon a single turnover. Thus, NP7 is the first case of a b-type heme that performs reduction of nitrite as a single substrate out of the iron(III) state.
Journal of Inorganic Biochemistry | 2011
Markus Knipp; Johanna J. Taing; Chunmao He
The determination of the redox properties of the cofactor in heme proteins provides fundamental insight into the chemical characteristics of this wide-spread class of metalloproteins. For the preparation of the ferroheme state, probably the most widely applied reductant is sodium dithionite, which at neutral pH has a reduction potential well below the reduction potential of most heme centers. In addition to the heme iron, some heme proteins, including the nitrophorins (NPs), contain cysteinecysteine disulfide bonds. In the present study, the effect of dithionite on the disulfides of NP4 and NP7 is addressed. To gain deeper understanding of the disulfide/dithionite reaction, oxidized glutathione (GSSG), as a model system, was incubated with dithionite and the products were characterized by (13)C NMR spectroscopy and reverse phase chromatography in combination with mass spectrometry. This revealed the formation of one equivalent each of thiol (GSH) and glutathione-S-thiosulfate (GSSO(3)(-)). With this background information, the effect of dithionite on the cystines of NP4 and NP7 was studied after trapping of the thiols with para-cloromercurybenzyl sulfonate (p-CMBS) and subsequent matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) where the heterolytic cleavage of the SS bond appears with only 2molar equivalents of the reductant. Furthermore, prolonged electrochemical reduction of NP4 and NP7 in the presence of electrochemical mediators also leads to disulfide breakage. However, due to sterical shielding of the disulfide bridges in NP4 and NP7, the cystine reduction can be largely prevented by the use of stoichiometric amounts of reductant or limited electrochemical reduction. The described disulfide breakage during routine iron reduction is of importance for other heme proteins containing cystine(s).
Journal of the American Chemical Society | 2012
Stefania Abbruzzetti; Chunmao He; Hideaki Ogata; Stefano Bruno; Cristiano Viappiani; Markus Knipp
NO is an important signaling molecule in human tissue. However, the mechanisms by which this molecule is controlled and directed are currently little understood. Nitrophorins (NPs) comprise a group of ferriheme proteins originating from blood-sucking insects that are tailored to protect and deliver NO via coordination to and release from the heme iron. Therefore, the kinetics of the association and dissociation reactions were studied in this work using the ferroheme-CO complexes of NP4, NP4(D30N), and NP7 as isoelectronic models for the ferriheme-NO complexes. The kinetic measurements performed by nanosecond laser-flash-photolysis and stopped-flow are accompanied by resonance Raman and FT-IR spectroscopy to characterize the carbonyl species. Careful analysis of the CO rebinding kinetics reveals that in NP4 and, to a larger extent, NP7 internal gas binding cavities are located, which temporarily trap photodissociated ligands. Moreover, changes in the free energy barriers throughout the rebinding and release pathway upon increase of the pH are surprisingly small in case of NP4. Also in case of NP4, a heterogeneous kinetic trace is obtained at pH 7.5, which corresponds to the presence of two carbonyl species in the heme cavity that are seen in vibrational spectroscopy and that are due to the change of the distal heme pocket polarity. Quantification of the two species from FT-IR spectra allowed the fitting of the kinetic traces as two processes, corresponding to the previously reported open and closed conformation of the A-B and G-H loops. With the use of the A-B loop mutant NP4(D30N), it was confirmed that the kinetic heterogeneity is controlled by pH through the disruption of the H-bond between the Asp30 side chain and the Leu130 backbone carbonyl. Overall, this first study on the slow phase of the dynamics of diatomic gas molecule interaction with NPs comprises an important experimental contribution for the understanding of the dynamics involved in the binding/release processes of NO/CO in NPs.
Protein Science | 2007
Oliver Braun; Markus Knipp; Serge Chesnov; Milan Vašák
S‐Transnitrosation is an important bioregulatory process whereby NO+ equivalents are transferred between S‐nitrosothiols and Cys of target proteins. This reaction proceeds through a common intermediate R–S–N(O−)–S–R′ and it has been proposed that products different from S‐nitrosothiols may be formed in protein cavities. Recently, we have reported on the formation of such a product, an N‐thiosulfoximide, at the active site of the Cys hydrolase dimethylargininase‐1 (DDAH‐1) upon reaction with S‐nitroso‐l‐homocysteine (HcyNO). Here we have addressed the question of whether this novel product can also be formed with the endogenously occurring S‐nitrosothiols S‐nitroso‐l‐cysteine (CysNO) and S‐nitrosoglutathione (GSNO). Further, to explore the reason responsible for the unique formation of an N‐thiosulfoximide in DDAH‐1 we have expanded these studies to cytidine triphosphate synthetase (CTPS), which shows a similar active site architecture. ESI‐MS and activity measurements showed that the bulky GSNO does not react with both enzymes. In contrast, S‐nitrosylation of the active site Cys occurred in DDAH‐1 with CysNO and in CTPS with CysNO and HcyNO. Although kinetic analysis indicated that these compounds act as specific irreversible inhibitors, no N‐thiosulfoximide was formed. The reasons likely responsible for the absence of the N‐thiosulfoximide formation are discussed using molecular models of DDAH‐1 and CTPS. In tissue extracts DDAH was inhibited only by HcyNO, with an IC50 value similar to that of the isolated protein. Biological implications of these studies for the function of both enzymes are discussed.
ChemBioChem | 2012
Judith F. Siebel; Robyn Laura Kosinsky; Bo Åkerström; Markus Knipp
α1‐Microglobulin (α1m) is a 26 kDa plasma and tissue protein belonging to the lipocalin protein family. Previous investigations indicate that the protein interacts with heme and suggest that it has a function in heme metabolism. However, detailed characterizations of the α1m–heme interactions are lacking. Here, we report for the first time the preparation and analysis of a stable α1m–heme complex upon carbamidomethylation of the reactive Cys34 by using recombinantly expressed human α1m. Analytical size‐exclusion chromatography coupled with a diode‐array absorbance spectrophotometry demonstrates that at first an α1m–heme monomer is formed. Subsequently, a second heme triggers oligomerization that leads to trimerization. The resulting (α1m[heme]2)3 complex was characterized by resonance Raman and EPR spectroscopy, which support the presence of two ferrihemes, thus indicating an unusual spin‐state admixed ground state with S=3/2, 5/2.
Journal of Chemical Physics | 2014
Hendrik Vondracek; Jessica Dielmann-Gessner; Wolfgang Lubitz; Markus Knipp; Martina Havenith
The influence of β-lactoglobulin (βLG) on the fast sub-picosecond collective hydration dynamics in the solvent was investigated by THz absorption spectroscopy as a function of pH. It is well-known that a change in pH from pH 6 to pH 8 reversibly opens or closes the binding cavity by a transition of the E-F loop. Furthermore, the aggregation of the protein into dimers is affected, which is thought to be triggered by changes in the enzymes electrostatic potential. Our data reveal that pH has a clear influence on the THz absorption of βLG. We discuss this influence in light of the changes observed in the sub-psec solute/solvent dynamics when probed by THz spectroscopy, which are, in turn, seen to correlate with changes in the pH value.