Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Kreuz is active.

Publication


Featured researches published by Markus Kreuz.


Nature Genetics | 2012

Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing

Julia Richter; Matthias Schlesner; Steve Hoffmann; Markus Kreuz; Ellen Leich; Birgit Burkhardt; Maciej Rosolowski; Ole Ammerpohl; Rabea Wagener; Stephan H. Bernhart; Dido Lenze; Monika Szczepanowski; Maren Paulsen; Simone Lipinski; Robert B. Russell; Sabine Adam-Klages; Gordana Apic; Alexander Claviez; Dirk Hasenclever; Volker Hovestadt; Nadine Hornig; Jan O. Korbel; Dieter Kube; David Langenberger; Chris Lawerenz; Jasmin Lisfeld; Katharina Meyer; Simone Picelli; Jordan Pischimarov; Bernhard Radlwimmer

Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.


American Journal of Human Genetics | 2010

Germline Nonsense Mutation and Somatic Inactivation of SMARCA4/BRG1 in a Family with Rhabdoid Tumor Predisposition Syndrome

Reinhard Schneppenheim; Michael C. Frühwald; Stefan Gesk; Martin Hasselblatt; Astrid Jeibmann; Uwe Kordes; Markus Kreuz; Ivo Leuschner; Jose Ignacio Martin Subero; Tobias Obser; Florian Oyen; Inga Vater; Reiner Siebert

Rhabdoid tumors of early infancy are highly aggressive with consequent poor prognosis. Most cases show inactivation of the SMARCB1 (also known as INI1 and hSNF5) tumor suppressor, a core member of the ATP-dependent SWI/SNF chromatin-remodeling complex. Familial cases, described as rhabdoid tumor predisposition syndrome (RTPS), have been linked to heterozygous SMARCB1 germline mutations. We identified inactivation of another member of the SWI/SNF chromatin-remodeling complex, its ATPase subunit SMARCA4 (also known as BRG1), due to a SMARCA4/BRG1 germline mutation and loss of heterozygosity by uniparental disomy in the tumor cells of two sisters with rhabdoid tumors lacking SMARCB1 mutations. SMARCA4 is thus a second member of the SWI/SNF complex involved in cancer predisposition. Its general involvement in other tumor entities remains to be established.


Blood | 2009

New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling

José I. Martín-Subero; Markus Kreuz; Marina Bibikova; Stefan Bentink; Ole Ammerpohl; Eliza Wickham-Garcia; Maciej Rosolowski; Julia Richter; Lidia Lopez-Serra; Esteban Ballestar; Hilmar Berger; Xabier Agirre; Heinz-Wolfram Bernd; Vincenzo Calvanese; Sergio Cogliatti; Hans G. Drexler; Jian-Bing Fan; Mario F. Fraga; Martin Leo Hansmann; Michael Hummel; Wolfram Klapper; Bernhard Korn; Ralf Küppers; Roderick A. F. MacLeod; Peter Möller; German Ott; Christiane Pott; Felipe Prosper; Andreas Rosenwald; Carsten Schwaenen

Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.


Blood | 2011

Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults

Itziar Salaverria; Claudia Philipp; Ilske Oschlies; Christian W. Kohler; Markus Kreuz; Monika Szczepanowski; Birgit Burkhardt; Heiko Trautmann; Stefan Gesk; Miroslaw Andrusiewicz; Hilmar Berger; Miriam Fey; Lana Harder; Dirk Hasenclever; Michael Hummel; Markus Loeffler; Friederike Mahn; Idoia Martin-Guerrero; Shoji Pellissery; Christiane Pott; Michael Pfreundschuh; Alfred Reiter; Julia Richter; Maciej Rosolowski; Carsten Schwaenen; Harald Stein; Lorenz Trümper; Swen Wessendorf; Rainer Spang; Ralf Küppers

The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma.


Acta Neuropathologica | 2015

Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups

Michael Weller; Ruthild G. Weber; Edith Willscher; Vera Riehmer; Bettina Hentschel; Markus Kreuz; Jörg Felsberg; Ulrike Beyer; Henry Löffler-Wirth; Kerstin Kaulich; Joachim P. Steinbach; Christian Hartmann; Dorothee Gramatzki; Johannes Schramm; Manfred Westphal; Gabriele Schackert; Matthias Simon; Tobias Martens; Jan Boström; Christian Hagel; Michael Sabel; Dietmar Krex; Jörg C. Tonn; Wolfgang Wick; Susan Noell; Uwe Schlegel; Bernhard Radlwimmer; Torsten Pietsch; Markus Loeffler; Andreas von Deimling

Abstract Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether large-scale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome- and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, including three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups. Correlation of DNA-based molecular stratification with clinical outcome allowed to define three major prognostic groups with characteristic genomic aberrations. The best prognosis was found in patients with IDH1/2 mutant and 1p/19q co-deleted tumors. Patients with IDH1/2 wild-type gliomas and glioblastoma-like genomic alterations, including gain on chromosome arm 7q (+7q), loss on chromosome arm 10q (−10q), TERT promoter mutation and oncogene amplification, displayed the worst outcome. Intermediate survival was seen in patients with IDH1/2 mutant, but 1p/19q intact, mostly astrocytic gliomas, and in patients with IDH1/2 wild-type gliomas lacking the +7q/−10q genotype and TERT promoter mutation. This molecular subgrouping stratified patients into prognostically distinct groups better than histological classification. Addition of gene expression data to this genomic classifier did not further improve prognostic stratification. In summary, DNA-based molecular profiling of WHO grade II and III gliomas distinguishes biologically distinct tumor groups and provides prognostically relevant information beyond histological classification as well as IDH1/2 mutation and 1p/19q co-deletion status.


Blood | 2012

Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma

Wolfram Klapper; Markus Kreuz; Christian W. Kohler; Birgit Burkhardt; Monika Szczepanowski; Itziar Salaverria; Michael Hummel; Markus Loeffler; Shoji Pellissery; Wilhelm Woessmann; Carsten Schwänen; Lorenz Trümper; Swen Wessendorf; Rainer Spang; Dirk Hasenclever; Reiner Siebert

Diffuse large B-cell lymphoma is the most frequent type of B-cell lymphoma in adult patients but also occurs in children. Patients are currently assigned to therapy regimens based on arbitrarily chosen age limits only (eg, 18 or 60 years) and not biologically justified limits. A total of 364 diffuse large B-cell lymphomas and related mature aggressive B-cell lymphomas other than Burkitt lymphoma from all age groups were analyzed by comprehensive molecular profiling. The probability of several biologic features previously reported to be associated with poor prognosis in diffuse large B-cell lymphoma, such as ABC subtype, BCL2 expression, or cytogenetic complexity, increases with age at diagnosis. Similarly, various genetic features, such as IRF4 translocations, gains in 1q21, 18q21, 7p22, and 7q21, as well as changes in 3q27, including gains and translocations affecting the BCL6 locus, are significantly associated with patient age, but no cut-offs between age groups could be defined. If age was incorporated in multivariate analyses, genetic complexity lost its prognostic significance, whereas the prognostic impact of ABC subtype and age were additive. Our data indicate that aging is a major determinant of lymphoma biology. They challenge current concepts regarding both prognostic biomarkers and treatment stratification based on strict age cut-offs.


Haematologica | 2014

Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma

Sietse M. Aukema; Markus Kreuz; Christian W. Kohler; Maciej Rosolowski; Dirk Hasenclever; Michael Hummel; Ralf Küppers; Dido Lenze; German Ott; Christiane Pott; Julia Richter; Andreas Rosenwald; Monika Szczepanowski; Carsten Schwaenen; Harald Stein; Heiko Trautmann; Swen Wessendorf; Lorenz Trümper; Markus Loeffler; Rainer Spang; Philip M. Kluin; Wolfram Klapper; Reiner Siebert

Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC+) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC+ lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC+-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6+/MYC+ and BCL2+/MYC+ double-hit lymphomas. BCL2+/MYC+ double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC+ lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC+ lymphomas sharing various molecular characteristics.


Blood | 2014

A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma

Itziar Salaverria; Idoia Martin-Guerrero; Rabea Wagener; Markus Kreuz; Christian W. Kohler; Julia Richter; Barbara Pienkowska-Grela; Patrick Adam; Birgit Burkhardt; Alexander Claviez; Christine Damm-Welk; Hans G. Drexler; Michael Hummel; Elaine S. Jaffe; Ralf Küppers; Christine Lefebvre; Jasmin Lisfeld; Markus Löffler; Roderick A. F. MacLeod; Inga Nagel; Ilske Oschlies; Maciej Rosolowski; Robert B. Russell; Grzegorz Rymkiewicz; Detlev Schindler; Matthias Schlesner; René Scholtysik; Carsten Schwaenen; Rainer Spang; Monika Szczepanowski

The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.


Genes, Chromosomes and Cancer | 2009

Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status

Carsten Schwaenen; Andreas Viardot; Hilmar Berger; Thomas F. E. Barth; Stefan Bentink; Hartmut Döhner; Martina Enz; Alfred C. Feller; Martin Leo Hansmann; Michael Hummel; Hans A. Kestler; Wolfram Klapper; Markus Kreuz; Dido Lenze; Markus Loeffler; Peter Möller; Hans Konrad Müller-Hermelink; German Ott; Maciej Rosolowski; Andreas Rosenwald; Sandra Ruf; Reiner Siebert; Rainer Spang; Harald Stein; Lorenz Truemper; Peter Lichter; Martin Bentz; Swen Wessendorf

Follicular lymphoma (FL) is characterized by a large number of chromosomal aberrations. However, their exact genomic extension and involved target genes remain to be determined. For this purpose, we used array‐based intermediate‐high resolution genomic profiling in combination with Affymetrix™ gene expression analysis. Tumor specimens from 128 FL patients were analyzed for the presence of genomic aberrations and the results were correlated to clinical data sets and mRNA expression levels. In 114 (89%) of the 128 analyzed cases, a total of 688 genomic aberrations (384 gains/amplifications and 304 losses) were detected. Frequent genomic aberrations were: −1p36 (18%), +2p15 (24%), −3q (14%), −6q (25%), +7p (19%), +7q (23%), +8q (14%), −9p (16%), −11q (15%), +12q (20%), −13q (11%), −17p (16%), +18p (18%), and +18q (28%). Critical segments of these imbalances were delineated to genomic fragments with a minimum size down to 0.2 Mb. By comparison of these with mRNA gene expression data, putative candidate genes were identified. Moreover, we found that deletions affecting the tumor suppressor gene CDKN2A/B on 9p21 were detected in nontransformed FL grade I–II. For this aberration as well as for −6q25 and −6q26, an association with inferior survival was observed.


Nature Genetics | 2015

DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

Helene Kretzmer; Stephan H. Bernhart; Wei Wang; Andrea Haake; Marc A. Weniger; Anke K. Bergmann; Matthew J. Betts; Enrique Carrillo-de-Santa-Pau; Jana Gutwein; Julia Richter; Volker Hovestadt; Bingding Huang; Daniel Rico; Frank Jühling; Julia Kolarova; Qianhao Lu; Christian Otto; Rabea Wagener; Judith Arnolds; Birgit Burkhardt; Alexander Claviez; Hans G. Drexler; Sonja Eberth; Roland Eils; Paul Flicek; Siegfried Haas; Michael Hummel; Dennis Karsch; Hinrik H D Kerstens; Wolfram Klapper

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation–positive Burkitt lymphoma, nine BCL2 translocation–positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.

Collaboration


Dive into the Markus Kreuz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Küppers

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Birgit Burkhardt

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge