Markus Kubicek
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Kubicek.
Journal of The American Society of Nephrology | 2012
Thomas Weichhart; Chantal Kopecky; Markus Kubicek; Michael Haidinger; Dominik Döller; Karl Katholnig; Cacang Suarna; Philipp Eller; Markus Tölle; Christopher Gerner; Gerhard J. Zlabinger; Markus van der Giet; Walter H. Hörl; Roland Stocker; Marcus D. Säemann
Uremia impairs the atheroprotective properties of HDL, but the mechanisms underlying why this occurs are unknown. Here, we observed that HDL isolated from healthy individuals inhibited the production of inflammatory cytokines by peripheral monocytes stimulated with a Toll-like receptor 2 agonist. In contrast, HDL isolated from the majority of patients with ESRD did not show this anti-inflammatory property; many HDL samples even promoted the production of inflammatory cytokines. To investigate this difference, we used shotgun proteomics to identify 49 HDL-associated proteins in a uremia-specific pattern. Proteins enriched in HDL from patients with ESRD (ESRD-HDL) included surfactant protein B (SP-B), apolipoprotein C-II, serum amyloid A (SAA), and α-1-microglobulin/bikunin precursor. In addition, we detected some ESRD-enriched proteins in earlier stages of CKD. We did not detect a difference in oxidation status between HDL isolated from uremic and healthy patients. Regarding function of these uremia-specific proteins, only SAA mimicked ESRD-HDL by promoting inflammatory cytokine production. Furthermore, SAA levels in ESRD-HDL inversely correlated with its anti-inflammatory potency. In conclusion, HDL has anti-inflammatory activities that are defective in uremic patients as a result of specific changes in its molecular composition. These data suggest a potential link between the high levels of inflammation and cardiovascular mortality in uremia.
Clinical Chemistry and Laboratory Medicine | 2009
Rolf Apweiler; Charalampos Aslanidis; Thomas Deufel; Andreas O. H. Gerstner; Jens Hansen; Dennis Hochstrasser; Roland Kellner; Markus Kubicek; Friedrich Lottspeich; Edmund Maser; Hans-Werner Mewes; Helmut E. Meyer; Stefan Müllner; Wolfgang Mutter; Michael Neumaier; Peter Nollau; Hans G. Nothwang; Fredrik Pontén; Andreas Radbruch; Knut Reinert; Gregor Rothe; Hannes Stockinger; Attila Tárnok; Mike Taussig; Andreas Thiel; Joachim Thiery; Marius Ueffing; G. Valet; Joël Vandekerckhove; Christoph Wagener
Recent developments in proteomics technology offer new opportunities for clinical applications in hospital or specialized laboratories including the identification of novel biomarkers, monitoring of disease, detecting adverse effects of drugs, and environmental hazards. Advanced spectrometry technologies and the development of new protein array formats have brought these analyses to a standard, which now has the potential to be used in clinical diagnostics. Besides standardization of methodologies and distribution of proteomic data into public databases, the nature of the human body fluid proteome with its high dynamic range in protein concentrations, its quantitation problems, and its extreme complexity present enormous challenges. Molecular cell biology (cytomics) with its link to proteomics is a new fast moving scientific field, which addresses functional cell analysis and bioinformatic approaches to search for novel cellular proteomic biomarkers or their release products into body fluids that provide better insight into the enormous biocomplexity of disease processes and are suitable for patient stratification, therapeutic monitoring, and prediction of prognosis. Experience from studies of in vitro diagnostics and especially in clinical chemistry showed that the majority of errors occurs in the preanalytical phase and the setup of the diagnostic strategy. This is also true for clinical proteomics where similar preanalytical variables such as inter‐ and intra‐assay variability due to biological variations or proteolytical activities in the sample will most likely also influence the results of proteomics studies. However, before complex proteomic analysis can be introduced at a broader level into the clinic, standardization of the preanalytical phase including patient preparation, sample collection, sample preparation, sample storage, measurement, and data analysis is another issue which has to be improved. In this report, we discuss the recent advances and applications that fulfill the criteria for clinical proteomics with the focus on cellular proteomics (cytoproteomics) as related to preanalytical and analytical standardization and to quality control measures required for effective implementation of these technologies and analytes into routine laboratory testing to generate novel actionable health information. It will then be crucial to design and carry out clinical studies that can eventually identify novel clinical diagnostic strategies based on these techniques and validate their impact on clinical decision making.
Thrombosis and Haemostasis | 2009
Klaus Distelmaier; Christopher Adlbrecht; Johannes Jakowitsch; Susanne Winkler; Daniela Dunkler; Christopher Gerner; Oswald Wagner; Irene M. Lang; Markus Kubicek
Atherosclerotic plaque rupture with subsequent mural thrombus formation is considered the main event compromising epicardial flow in acute myocardial infarction (AMI). However, the precise mechanisms underlying acute coronary occlusion are unknown. We compared the proteomic profiles of systemic plasma and plasma derived from the site of thrombus formation of patients with AMI by two-dimensional gel electrophoresis and ELISA. We identified a local activation of the complement system, with selective accumulation of the complement activator C-reactive protein (CRP) and the downstream complement effectors C3a and C5a. CRP in coronary thrombus co-localised with C1q and C3 immunoreactivities, suggesting classical complement activation. In vitro, coronary thrombus derived plasma enhanced neutrophil chemotaxis in a C5a dependent fashion. In vivo, neutrophil accumulation at the site of thrombus formation paralleled the time delay from symptom onset to first balloon inflation or aspiration, and was correlated with C5a and enzymatic infarct size. We present the first direct evidence for localised complement activation in acute coronary thrombi. Our data indicate that local complement effectors amplify the vascular occlusion process in AMI by enhanced neutrophil recruitment.
Electrophoresis | 2008
Rene Stempfer; Markus Kubicek; Irene M. Lang; Noehammer Christa; Christopher Gerner
The aim of this study is to quantify the effectivity of the depletion of human high‐abundance serum and plasma proteins for improved protein identification and disease marker candidate discovery and to assess the risk of concomitant removal of relevant marker proteins. 2‐DE and bottom‐up shotgun MS combining 2‐D capillary chromatography with MS/MS were applied in parallel for the analysis of fractions resulting from the depletion procedure. For many proteins the factors of enrichment by the depletion were obvious allowing their enhanced detection and identification upon high‐abundance protein depletion. Nano‐liquid chromatography linked MS allowed the efficient identification of several low‐abundant proteins that were not identified on the 2‐DE gels. Resolving the fractions that were eluted from the matrix upon depletion indicated unspecific binding of disease relevant proteins in plasma samples from acute myocardial infarction patients. The unspecific binding to the depletion matrix of inflammatory markers spiked into the serum was found to depend on the type of capturing agent used. Polyclonal avian antibodies (IgY) displayed the least unspecific binding due to the high immunogenicity of mammalian proteins in avian hosts.
Electrophoresis | 2009
Helge Wimmer; Nina Gundacker; Johannes Griss; Verena J. Haudek; Stefan Stättner; Thomas Mohr; Hannes Zwickl; Verena Paulitschke; David M. Baron; Wolfgang Trittner; Markus Kubicek; Editha Bayer; Astrid Slany; Christopher Gerner
Interpretation of proteome data with a focus on biomarker discovery largely relies on comparative proteome analyses. Here, we introduce a database‐assisted interpretation strategy based on proteome profiles of primary cells. Both 2‐D‐PAGE and shotgun proteomics are applied. We obtain high data concordance with these two different techniques. When applying mass analysis of tryptic spot digests from 2‐D gels of cytoplasmic fractions, we typically identify several hundred proteins. Using the same protein fractions, we usually identify more than thousand proteins by shotgun proteomics. The data consistency obtained when comparing these independent data sets exceeds 99% of the proteins identified in the 2‐D gels. Many characteristic differences in protein expression of different cells can thus be independently confirmed. Our self‐designed SQL database (CPL/MUW – database of the Clinical Proteomics Laboratories at the Medical University of Vienna accessible via www.meduniwien.ac.at/proteomics/database) facilitates (i) quality management of protein identification data, which are based on MS, (ii) the detection of cell type‐specific proteins and (iii) of molecular signatures of specific functional cell states. Here, we demonstrate, how the interpretation of proteome profiles obtained from human liver tissue and hepatocellular carcinoma tissue is assisted by the Clinical Proteomics Laboratories at the Medical University of Vienna‐database. Therefore, we suggest that the use of reference experiments supported by a tailored database may substantially facilitate data interpretation of proteome profiling experiments.
Clinical Science | 2012
Klaus Distelmaier; Christopher Adlbrecht; Johannes Jakowitsch; Oswald Wagner; Christopher Gerner; Irene M. Lang; Markus Kubicek
Thrombotic occlusion of an epicardial coronary artery on the grounds of atherosclerotic plaque is considered the ultimate step in AMI (acute myocardial infarction). However, the precise pathophysiological mechanisms underlying acute coronary occlusion are not fully understood. We have analysed proteomic profiles of systemic plasma and plasma derived from the site of coronary plaque rupture of non-diabetic patients with STEMI (ST-segment elevation myocardial infarction). Label-free quantification of MS/MS (tandem MS) data revealed differential regulation of complement cascade components and a decrease in anti-thrombotic PEDF (pigment epithelium-derived factor) between CS (culprit site)-derived plasma and systemic plasma. PEDF, which is known to have a protective role in atherothrombosis, was relatively decreased at the CS, with a level of expression inverse to local MMP-9 (matrix metalloproteinase-9) activity. CS plasma displayed enhanced proteolytic activity towards PEDF. Proteomics of coronary thrombus aspirates indicate that PEDF processing is associated with coronary plaque rupture.
Genes & Development | 2006
Carmen Ivorra; Markus Kubicek; José M. González; Silvia M. Sanz-González; Alberto Álvarez-Barrientos; José-Enrique O'Connor; Brian Burke; Vicente Andrés
Cardiovascular Research | 2007
Francisco Verdeguer; Claudia Castro; Markus Kubicek; Davinia Pla; Marian Vila-Caballer; Ángela Vinué; Fernando Civeira; Miguel Pocovi; Juan J. Calvete; Vicente Andrés
Electrophoresis | 2006
Nina Gundacker; Editha Bayer; Elisabeth Traxler; Hannes Zwickl; Markus Kubicek; Johannes Stöckl; Christopher Gerner
Letters in Drug Design & Discovery | 2004
Markus Kubicek; Silvia M. Sanz-González; Francisco Verdeguer; Vicente Andrés