Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus O. Heller is active.

Publication


Featured researches published by Markus O. Heller.


Journal of Biomechanics | 2001

Hip contact forces and gait patterns from routine activities.

G. Bergmann; Georg Deuretzbacher; Markus O. Heller; Friedmar Graichen; A. Rohlmann; J Strauss; Georg N. Duda

In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.


Journal of Biomechanics | 2001

Musculo-skeletal loading conditions at the hip during walking and stair climbing

Markus O. Heller; G. Bergmann; G Deuretzbacher; Lutz Dürselen; M. Pohl; Lutz Claes; Norbert P. Haas; Georg N. Duda

Musculo-skeletal loading plays an important role in the primary stability of joint replacements and in the biological processes involved in fracture healing. However, current knowledge of musculo-skeletal loading is still limited. In the past, a number of musculo-skeletal models have been developed to estimate loading conditions at the hip. So far, a cycle-to-cycle validation of predicted musculo-skeletal loading by in vivo measurements has not been possible. The aim of this study was to determine the musculo-skeletal loading conditions during walking and climbing stairs for a number of patients and compare these findings to in vivo data. Following total hip arthroplasty, four patients underwent gait analysis during walking and stair climbing. An instrumented femoral prosthesis enabled simultaneous measurement of in vivo hip contact forces. On the basis of CT and X-ray data, individual musculo-skeletal models of the lower extremity were developed for each patient. Muscle and joint contact forces were calculated using an optimization algorithm. The calculated peak hip contact forces both over- and under-estimated the measured forces. They differed by a mean of 12% during walking and 14% during stair climbing. For the first time, a cycle-to-cycle validation of predicted musculo-skeletal loading was possible for walking and climbing stairs in several patients. In all cases, the comparison of in vivo measured and calculated hip contact forces showed good agreement.Thus, the authors consider the presented approach as a useful means to determine valid conditions for the analysis of prosthesis loading, bone modeling or remodeling processes around implants and fracture stability following internal fixation.


Journal of Biomechanics | 1998

Influence of muscle forces on femoral strain distribution.

Georg N. Duda; Markus O. Heller; Juergen Albinger; Olaf Schulz; Erich Schneider; Lutz Claes

Musculoskeletal loading influences the stresses and strains within the human femur and thereby affects the processes of bone modeling and remodeling. It is essential for implant design and simulations of bone modeling processes to identify locally high or low strain values which may lead to bone resorption and thereby affect the clinical outcome. Using a finite element model the stresses and strains of a femur with all thigh muscle and joint contact forces were calculated for four phases of a gait cycle. Reduced load sets with only a few major muscles were analyzed alternatively. In a completely balanced femur with all thigh muscles the stress and strain patterns are characterized by combined bending and torsion throughout the bone. Similar to in vivo recordings, the model with all thigh muscles showed peak surface strains below 2000 mu epsilon (45% gait cycle). Under simplified load regimes surface strains reached values close to 3000 mu epsilon. Within the proximal femur, the simplified load regimes produced differences in strain as high as 26% in comparison to those with all thigh muscles included. This difference is reduced to 5% if the adductors are added to a loading consisting of hip contact, abductors and ilio-tibial band. This study demonstrates the importance of an ensemble of muscle forces to reproduce a physiological strain distribution in the femur. Analytical attempts to simulate bone modeling, remodeling or bone density distributions should therefore rely on fully balanced external load regimes which account for the role of the various soft tissue forces.


Journal of the Royal Society Interface | 2011

Kinematic measures for assessing gait stability in elderly individuals: a systematic review

Dennis Hamacher; Navrag B. Singh; J.H. van Dieen; Markus O. Heller; William R. Taylor

Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohens d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted.


Journal of Orthopaedic Research | 2003

The initial phase of fracture healing is specifically sensitive to mechanical conditions

Petra Klein; Hanna Schell; Florian Streitparth; Markus O. Heller; Jean-Pierre Kassi; Frank Kandziora; Hermann Bragulla; Norbert P. Haas; Georg N. Duda

Interfragmentary movements affect the quality and quantity of callus formation. The mounting plane of monolateral external fixators may give direction to those movements. Therefore, the aim of this study was to determine the influence of the fixator mounting plane on the process of fracture healing.


Bio-medical Materials and Engineering | 2010

Realistic loads for testing hip implants

G. Bergmann; Friedmar Graichen; A. Rohlmann; Alwina Bender; Bernd Heinlein; Georg N. Duda; Markus O. Heller; Michael M. Morlock

The aim here was to define realistic load conditions for hip implants, based on in vivo contact force measurements, and to see whether current ISO standards indeed simulate real loads. The load scenarios obtained are based on in vivo hip contact forces measured in 4 patients during different activities and on activity records from 31 patients. The load scenarios can be adapted to various test purposes by applying average or high peak loads, high-impact activities or additional low-impact activities, and by simulating normal or very active patients. The most strenuous activities are walking (average peak forces 1800 N, high peak forces 3900 N), going up stairs (average peak forces 1900 N, high peak forces 4200 N) and stumbling (high peak forces 11,000 N). Torsional moments are 50% higher for going up stairs than for walking. Ten million loading cycles simulate an implantation time of 3.9 years in active patients. The in vitro fatigue properties of cementless implant fixations are exceeded during stumbling. At least for heavyweight and very active subjects, the real load conditions are more critical than those defined by the ISO standards for fatigue tests.


PLOS ONE | 2014

Standardized Loads Acting in Knee Implants

G. Bergmann; Alwina Bender; Friedmar Graichen; Joern Dymke; A. Rohlmann; Adam Trepczynski; Markus O. Heller; Ines Kutzner

The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372–4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure.


Journal of Biomechanics | 2001

Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing.

Georg N. Duda; Francesco Mandruzzato; Markus O. Heller; Jörg Goldhahn; Ruedi Moser; Markus Hehli; Lutz Claes; Norbert P. Haas

Unreamed nailing favors biology at the expense of the achievable mechanical stability. It is therefore of interest to define the limits of the clinical indications for this method. The extended usage of unreamed tibial nailing resulted in reports of an increased rate of complications, especially for the distal portion of the tibia. The goals of this work were to gain a thorough understanding of the load-sharing mechanism between unreamed nail and bone in a fractured tibia, to identify the mechanical reasons for the unfavorable clinical results, and to identify borderline indications due to biomechanical factors. In a three-dimensional finite element model of a human tibia, horizontal defects were stabilized by means of unreamed nailing for five different fracture locations, including proximal and distal borderline indications for this treatment method. The loading of the bone, the loading of the implant and the inter-fragmentary strains were computed. The findings of this study show that with all muscle and joint contact forces included, nailing leads to considerable unloading of the interlocked bone segments. Unreamed nailing of the distal defect results in an extremely low axial and high shear strain between the fragments. The results suggest that mechanical conditions are advantageous to unreamed nailing of proximal and mid-diaphyseal defects. Apart from biological reasons, clinical problems reported for distal fractures may be due to the less favorable mechanical conditions in unreamed nailing. From a biomechanical perspective, the treatment of distal tibial shaft fractures by means of unreamed nailing without additional fragment contact or without stabilizing the fibula should be carefully reconsidered.


Clinical Biomechanics | 2001

Influence of femoral anteversion on proximal femoral loading: measurement and simulation in four patients

Markus O. Heller; G. Bergmann; Georg Deuretzbacher; Lutz Claes; Norbert P. Haas; Georg N. Duda

OBJECTIVE The aim of this study was to determine the loading of the proximal femur during daily activities and to quantify the influence of femoral anteversion. DESIGN This study combined experimental and analytical approaches to determine the in vivo loading at the hip joint. A numerical musculo-skeletal model was validated against measured in vivo hip contact forces and then used to analyse the influence of anteversion on the loading conditions in the femur. BACKGROUND Musculo-skeletal loading of long bones is essential for joint replacement and fracture healing. Although joint contact forces have previously been measured in selected patients, the interaction between femoral anteversion and the associated musculo-skeletal loading environment remains unknown. METHODS The gait of four patients with force measuring hip prostheses was analysed during walking and stair-climbing. Musculo-skeletal loading was determined using individual numerical models by minimising the sum of the muscle forces. RESULTS Experimentally and numerically determined hip contact forces agreed both qualitatively and quantitatively. Muscle activity resulted in compression of the femur and small shear forces in the meta- and epi-physeal regions. Increasing the anteversion to an angle of 30 degrees increased hip contact forces and bending moments up to 28%. CONCLUSIONS This study has shown that femoral anteversion has a strong influence on the musculo-skeletal loading environment in the proximal femur. RELEVANCE Detailed musculo-skeletal modelling may allow pre-surgical, patient specific optimisation of loading on implant, bone and soft tissues.


PLOS ONE | 2013

Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during Gait

Ines Kutzner; Adam Trepczynski; Markus O. Heller; G. Bergmann

The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R2 = 0.56) and during the late stance phase (R2 = 0.51), a high correlation was observed at the early stance phase (R2 = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R2 = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of the force magnitude.

Collaboration


Dive into the Markus O. Heller's collaboration.

Researchain Logo
Decentralizing Knowledge