Markus Pahlow
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Pahlow.
Boundary-Layer Meteorology | 2001
Markus Pahlow; Marc B. Parlange; Fernando Porté-Agel
Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (≈1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter ζ = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.
Boundary-Layer Meteorology | 2006
Sukanta Basu; Fernando Porté-Agel; Efi Foufoula-Georgiou; Jean-François Vinuesa; Markus Pahlow
The ‘local scaling’ hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of the stable boundary layer in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of ongoing debate. Here, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. A wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct
Journal of Hydrologic Engineering | 2010
Bastian Klein; Markus Pahlow; Yeshewatesfa Hundecha; Andreas Schumann
The natural variability of floods cannot be represented appropriately by single design floods. Different hydrological scenarios are needed for sustainable design of flood protection structures such as flood control reservoirs and polders. In this paper a method to estimate the probability of generated hydrological scenarios for the risk analysis of a flood control system is presented. Bivariate probability analyses of different flood variables using copulas are applied to overcome the problem that univariate probability analysis may lead to an over- or underestimation of the hydrological risk. The mesoscale Unstrut river basin in Germany, which consists of two reservoirs located downstream of the main tributaries and flood polders, serves as test case. The spatial distribution of flood events within the river basin is analyzed by the joint probability of the inflow peaks at the two reservoirs. Furthermore, in a second application copulas are used for risk analysis of the individual flood detention structu...
Advances in Water Resources | 2001
Fernando Porté-Agel; Markus Pahlow; Charles Meneveau; Marc B. Parlange
Field measurements in the atmospheric boundary layer were carried out to identify the effect of atmospheric stability on subgrid-scale physics for large-eddy simulation. The basic instrumentation setup consisted of 12 three-dimensional sonic anemometers arranged in two parallel horizontal arrays (seven sensors in the lower array and five sensors in the upper array). Data from this setup are used to compute the subgrid-scale (SGS) heat fluxes and SGS dissipation of the temperature variance under stable and unstable stability conditions. The relative contribution of the SGS vertical flux to the total turbulent flux increases when going from unstable to stable conditions. The relative importance of negative SGS dissipation (backscatter) events becomes larger under stable conditions. The model coefficients for two well-known SGS models (eddy-viscosity and non-linear) are computed. Model coefficients are found to depend strongly on stability. Under both stable and unstable conditions, large negative SGS dissipation is associated with the onset of ejection events while large positive SGS dissipation tends to occur during the onset of sweep events. These findings are also supported by conditionally sampled 2D velocity and temperature fields obtained using the 12 anemometers placed in a vertical array.
Journal of Hydrometeorology | 2000
Fernando Porté-Agel; Marc B. Parlange; Charles Meneveau; William E. Eichinger; Markus Pahlow
Field measurements are undertaken with the specific purpose of addressing open issues in subgrid-scale (SGS) modeling of turbulence for large eddy simulation. Wind velocity and temperature signals are obtained using a horizontal linear array of six three-dimensional sonic anemometers placed at a height of 2.15 m in the surface layer over a grass field. From these data, the SGS heat flux and a two-dimensional surrogate of the SGS dissipation of temperature variance (x) are computed by means of two-dimensional horizontal filtering and by invoking Taylor’s hypothesis. Conditional averaging is used to isolate the effects of large-scale structures (sweeps and ejections) of the flow on the SGS dissipation under different stability conditions. During flow events associated with strong increments of vertical velocity (possibly associated with the onset of ejection events), negative values of x, indicative of transfer of temperature variance from the small scales to the resolved field (backscatter), have an important relative contribution regardless of atmospheric stability. Strong drops in the vertical velocity (possibly associated with the onset of sweeps) are accompanied by large positive values of the SGS dissipation. The two-dimensional SGS dissipation is compared with a one-dimensional surrogate based on a single sensor used in earlier work. The one- and two-dimensional results show qualitatively the same trends. Quantitative differences underscore the advantages of a two-dimensional approach based on the sensor array used in this work.
Science of The Total Environment | 2015
Markus Pahlow; P.R. van Oel; Mesfin Mekonnen; Arjen Ysbert Hoekstra
As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account.
Journal of Geophysical Research | 2004
Mariana Adam; Markus Pahlow; Vladimir A. Kovalev; John M. Ondov; Marc B. Parlange; Narayanan P. Nair
[1] High spatial and temporal resolution elastic backscatter lidar data from Baltimore are analyzed with a near-end approach to estimate vertical profiles of the aerosol extinction coefficient. The near-end approach makes use of the (1) aerosol scattering coefficient measured at the surface with a nephelometer (0.530 μm), (2) surface level particle size distribution, and (3) refractive index calculated using Mie theory to estimate the aerosol extinction coefficient boundary condition for the lidar equation. There was a broad range of atmospheric turbidity due to a strong haze event, which occurred because of smoke transport from Canadian forest fires, and led to a wide range of observed atmospheric properties. The index of refraction for aerosols estimated during the entire study period is 1.5–0.47 i, which is typical for soot. The measured surface level aerosol scattering coefficient ranged from σp = 0.002 to σp = 0.541 km−1, and the computed aerosol extinction coefficient spanned values κp = 0.01 to κp = 1.05 km−1. The derived mass concentration and the mass scattering ranges were 3.96–194 μg m−3 and 0.05–3.260 m2g−1, respectively. The aerosol optical properties were dominated by light absorption by soot.
Applied Optics | 2006
Markus Pahlow; Detlef Müller; Matthias Tesche; H. Eichler; Graham Feingold; Wynn L. Eberhard; Ya-Fang Cheng
Simulation studies were carried out with regard to the feasibility of using combined observations from sunphotometer (SPM) and lidar for microphysical characterization of aerosol particles, i.e., the retrieval of effective radius, volume, and surface-area concentrations. It was shown that for single, homogeneous aerosol layers, the aerosol parameters can be retrieved with an average accuracy of 30% for a wide range of particle size distributions. Based on the simulations, an instrument combination consisting of a lidar that measures particle backscattering at 355 and 1574 nm, and a SPM that measures at three to four channels in the range from 340 to 1020 nm is a promising tool for aerosol characterization. The inversion algorithm has been tested for a set of experimental data. The comparison with the particle size distribution parameters, measured with in situ instrumentation at the lidar site, showed good agreement.
Journal of Atmospheric and Oceanic Technology | 2007
Mariana Adam; Vladimir A. Kovalev; Cyle Wold; Jenny Newton; Markus Pahlow; Wei M. Hao; Marc B. Parlange
An improved measurement methodology and a data-processing technique for multiangle data obtained with an elastic scanning lidar in clear atmospheres are introduced. Azimuthal and slope scans are combined to reduce the atmospheric heterogeneity. Vertical profiles of optical depth and intercept (proportional to the logarithm of the backscatter coefficient) are determined. The purpose of this approach is to identify and remove data points that distort the regression analysis results in order to improve the accuracy of the retrieved optical depth and of the intercept. In addition, the influence of systematic distortions has been investigated. Furthermore, profiles of the optical depth, intercept, and the range-squared-corrected signals have been used to determine the lidar overlap function as a function of range. Simulation and experimental results of this data-processing technique are presented.
Archive | 2011
Bastian Klein; Andreas Schumann; Markus Pahlow
Consideration of a broad range of hydrological loads is essential for risk-based flood protection planning. Furthermore, in the planning process of technical retention facilities it is necessary to use flood events, which are specified by several characteristics (peak, volume and shape). Multivariate statistical methods are required for their probabilistic evaluation. Coupled stochastic-deterministic simulation may be applied to generate a runoff time series, since the required amount of data is generally not available. Even the effect of complex flood protection systems may be evaluated through generation of a data base by means of stochastic-deterministic simulations with subsequent statistical analysis of the individual hydrological load scenarios. Multivariate frequency analyses of correlated random variables are useful to specify these scenarios statistically. Copulas are a very flexible method to estimate multivariate distributions, because the marginal distributions of the random variables can differ. Here a methodology for flood risk assessment is presented which was applied in two case studies in Germany.