Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Paulmichl is active.

Publication


Featured researches published by Markus Paulmichl.


Nature Medicine | 2007

Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1

Susanne Ludwiczek; Igor Theurl; Martina U. Muckenthaler; Martin Jakab; Sabine Mair; Milan Theurl; Judit Kiss; Markus Paulmichl; Matthias W. Hentze; Markus Ritter; Guenter Weiss

Hereditary hemochromatosis and transfusional iron overload are frequent clinical conditions associated with progressive iron accumulation in parenchymal tissues, leading to eventual organ failure. We have discovered a new mechanism to reverse iron overload—pharmacological modulation of the divalent metal transporter-1 (DMT-1). DMT-1 mediates intracellular iron transport during the transferrin cycle and apical iron absorption in the duodenum. Its additional functions in iron handling in the kidney and liver are less well understood. We show that the L-type calcium channel blocker nifedipine increases DMT-1–mediated cellular iron transport 10- to 100-fold at concentrations between 1 and 100 μM. Mechanistically, nifedipine causes this effect by prolonging the iron-transporting activity of DMT-1. We show that nifedipine mobilizes iron from the liver of mice with primary and secondary iron overload and enhances urinary iron excretion. Modulation of DMT-1 function by L-type calcium channel blockers emerges as a new pharmacological therapy for the treatment of iron overload disorders.


Cellular Physiology and Biochemistry | 2002

Mechanisms Sensing and Modulating Signals Arising From Cell Swelling

Martin Jakab; Johannes Fuerst; Martin Gschwentner; Guido Bottà; M. L. Garavaglia; Claudia Bazzini; Simona Rodighiero; Giuliano Meyer; Sonja Eichmueller; Ewald Woell; Sabine Chwatal; Markus Ritter; Markus Paulmichl

Cell volume alterations are involved in numerous cellular events like epithelial transport, metabolic processes, hormone secretion, cell migration, proliferation and apoptosis. Above all it is a need for every cell to counteract osmotic cell swelling in order to avoid cell damage. The defence against excess cell swelling is accomplished by a reduction of the intracellular osmolarity by release of organic- or inorganic osmolytes from the cell or by synthesis of osmotically less active macromolecules from their specific subunits. De-spite the large amount of experimental data that has accumulated, the intracellular mechanisms underlying the sensing of cell volume perturbations and the activation of volume compensatory processes, commonly summarized as regulatory volume decrease (RVD), are still only partly revealed. Moving into this field opens a complex scenario of molecular rearrangements and interactions involving intracellular messengers such as calcium, phosphoinositides and inositolphosphates as well as phosphoryla-tion/dephosphorylation processes and cytoskeletal reorganization with marked cell type- and tissue specific variations. Even in one and the same cell type significant differences regarding the activated pathways during RVD may be evident. This makes it virtually im-possible to unambigously define common sensing- and sinaling pathways used by differ-ent cells to readjust their celll volume, even if all these pathways converge to the activa-tion of comparatively few sets of effectors serving for osmolyte extrusion, including ion channels and transporters. This review is aimed at providing an insight into the manifold cellular mechanisms and alterations occuring during cell swelling and RVD.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA

Alejandra Pera; Silvia Dossena; Simona Rodighiero; Marta Gandía; Guido Bottà; Giuliano Meyer; Felipe Moreno; Charity Nofziger; Concepción Hernández-Chico; Markus Paulmichl

Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, with malformations of the inner ear, ranging from enlarged vestibular aqueduct (EVA) to Mondini malformation, and deficient iodide organification in the thyroid gland. Nonsyndromic EVA (ns-EVA) is a separate type of sensorineural hearing loss showing normal thyroid function. Both Pendred syndrome and ns-EVA seem to be linked to the malfunction of pendrin (SLC26A4), a membrane transporter able to exchange anions between the cytosol and extracellular fluid. In the past, the pathogenicity of SLC26A4 missense mutations were assumed if the mutations fulfilled two criteria: low incidence of the mutation in the control population and substitution of evolutionary conserved amino acids. Here we show that these criteria are insufficient to make meaningful predictions about the effect of these SLC26A4 variants on the pendrin-induced ion transport. Furthermore, we functionally characterized 10 missense mutations within the SLC26A4 ORF, and consistently found that on the protein level, an addition or omission of a proline or a charged amino acid in the SLC26A4 sequence is detrimental to its function. These types of changes may be adequate for predicting SLC26A4 functionality in the absence of direct functional tests.


Journal of Molecular Endocrinology | 2009

Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome

Silvia Dossena; Simona Rodighiero; Valeria Vezzoli; Charity Nofziger; Elisabetta Salvioni; Marta Boccazzi; Elisabeth Grabmayer; Guido Bottà; Giuliano Meyer; Laura Fugazzola; Paolo Beck-Peccoz; Markus Paulmichl

Pendred syndrome (PS) is the most frequent form of genetically related syndromic hearing loss, and is associated with mutations of pendrin, encoded by the SLC26A4 gene. This protein localizes to the cellular membrane and permits the exchange of anions between the cytosol and extracellular space. In the inner ear, pendrin conditions the endolymph, allowing for the proper function of sensory cells. Understanding the relationship between the genotype and phenotype of pendrin mutations would aid clinicians to better serve PS patients-however, little is known. Here, we summarize the available data concerning SLC26A4 mutations and how they relate to transporter function. The main findings suggest that all the truncation mutations tested annihilate pendrin function, and that the addition or omission of proline, or the addition or omission of charged amino acids in the sequence of SLC26A4 result in a substantial to dramatic reduction in pendrin function.


Journal of Biological Chemistry | 2003

Cell swelling stimulates cytosol to membrane transposition of ICln.

Markus Ritter; Andrea Ravasio; Martin Jakab; Sabine Chwatal; Johannes Fürst; Andreas Laich; Martin Gschwentner; Sara Signorelli; Carmen M. Burtscher; Sonja Eichmüller; Markus Paulmichl

ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (i) the cytosol versus cell membrane distribution of ICln in rat kidney tubules, NIH 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and LLC-PK1 epithelial cells, (ii) fluorescence resonance energy transfer (FRET) in living fibroblasts between fluorescently tagged ICln and fluorochromes in the cell membrane, and (iii) possible functional consequences of an enhanced ICln presence at the cell membrane. We demonstrate that ICln distribution in rat kidneys depends on the parenchymal localization and functional state of the tubules and that cell swelling causes ICln redistribution from the cytosol to the cell membrane in NIH 3T3 fibroblasts and LLC-PK1 cells. The addition of purified ICln protein to the extracellular solution or overexpression of farnesylated ICln leads to an increased anion permeability in NIH 3T3 fibroblasts. The swelling-induced redistribution of ICln correlates to altered kinetics of RVDC in NIH 3T3 fibroblasts, LLC-PK1 cells, and MDCK cells. In these cells, RVDC develops more rapidly, and in MDCK cells the rate of swelling-induced depolarization is accelerated if cells are swollen for a second time. This coincides with an enhanced ICln association with the cell membrane.


Pharmacogenomics Journal | 2015

Pharmacogenomic information in drug labels: European Medicines Agency perspective

Falk Ehmann; L Caneva; K Prasad; Markus Paulmichl; M Maliepaard; A Llerena; M Ingelman-Sundberg; M Papaluca-Amati

Pharmacogenomics (PGx) has a growing impact on healthcare and constitutes one of the major pillars of personalised medicine. For the purpose of improved individualised drug treatment, there is an increasing effort to develop drugs suitable for specific subpopulations and to incorporate pharmacogenomic drug labels in existing and novel medicines. Here, we review the pharmacogenomic drug labels of all 517 medicinal products centrally approved in the European Union (EU) since the establishment of the European Medicines Agency in 1995. We identified all pharmacogenomic-related information mentioned in the product labels and classified it according to its main effect and function on drug treatment, that is, metabolism, transport and pharmacodynamics, and according to the place of the respective section of the Summary of Product Characteristics (SmPC). The labels are preferentially present in drugs having antineoplastic properties. We find that the number of drugs with pharmacogenomic labels in EU increases now steadily and that it will be an important task for the future to refine the legislation on how this information should be utilised for improvement of drug therapy.


Nature Reviews Drug Discovery | 2013

Pharmacogenetics in the evaluation of new drugs: a multiregional regulatory perspective

Marc Maliepaard; Charity Nofziger; Marisa Papaluca; Issam Zineh; Yoshiaki Uyama; Krishna Prasad; Christian Grimstein; Michael A. Pacanowski; Falk Ehmann; Silvia Dossena; Markus Paulmichl

Pharmacogenetics, one of the cornerstones of personalized medicine, has the potential to change the way in which health care is offered by stratifying patients into various pretreatment categories, such as likely responders, likely non-responders or likely to experience adverse drug reactions. In order to advance drug development and regulatory science, regulatory agencies globally have promulgated guidelines on pharmacogenetics for nearly a decade. The aim of this article is to provide an overview of new guidelines for the implementation of pharmacogenetics in drug development from a multiregional regulatory perspective — encompassing Europe, the United States and Japan — with an emphasis on clinical pharmacokinetics.


Biochimica et Biophysica Acta | 2000

Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters.

Carola Stegen; Ioulia Matskevich; Carsten A. Wagner; Markus Paulmichl; Florian Lang; Stefan Bröer

Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.


Journal of Biological Chemistry | 2010

Calcium Oxalate Stone Formation in the Inner Ear as a Result of an Slc26a4 Mutation

Amiel A. Dror; Yael Politi; Hashem Shahin; Danielle R. Lenz; Silvia Dossena; Charity Nofziger; Helmut Fuchs; Martin Hrabé de Angelis; Markus Paulmichl; Steve Weiner; Karen B. Avraham

Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function. Thousands of these biominerals, known as otoconia, are associated with the utricle and saccule sensory maculae and are vital for mechanical stimulation of the sensory hair cells. We show that a missense mutation within the Slc26a4 gene abolishes the transport activity of its encoded protein, pendrin. As a consequence, dramatic changes in mineral composition, size, and shape occur within the utricle and saccule in a differential manner. Although abnormal giant carbonate minerals reside in the utricle at all ages, in the saccule, a gradual change in mineral composition leads to a formation of calcium oxalate in adult mice. By combining imaging and spectroscopy tools, we determined the profile of mineral composition and morphology at different time points. We propose a novel mechanism for the accumulation and aggregation of oxalate crystals in the inner ear.


Clinical Pharmacology & Therapeutics | 2011

STAT6 Links IL‐4/IL‐13 Stimulation With Pendrin Expression in Asthma and Chronic Obstructive Pulmonary Disease

Charity Nofziger; Valeria Vezzoli; Silvia Dossena; T Schönherr; J Studnicka; J Nofziger; Simone Vanoni; S Stephan; M E Silva; G. Meyer; Markus Paulmichl

Signaling through the interleukin‐4/interleukin‐13 (IL‐4/IL‐13) receptor complex is a crucial mechanism in the development of bronchial asthma and chronic obstructive pulmonary disease (COPD). In bronchial epithelial cells, this signaling pathway leads to changes in the expression levels of several genes that are possibly involved in protection against and/or pathogenesis of these diseases. The expression of pendrin (SLC26A4), a candidate for the latter category, is upregulated by IL‐4/IL‐13 and leads to overproduction of mucus and increased viscosity of the airway surface liquid (ASL). Therefore, elucidating the transcriptional regulation of pendrin could aid in the development of new pharmacological leads for asthma and/or COPD therapy. Here we show that IL‐4/IL‐13 significantly increased human pendrin promoter activity in HEK‐Blue cells but not in STAT6‐deficient HEK293 Phoenix cells; that mutation of the STAT6 binding site (N4 GAS motif) rendered the promoter insensitive to IL‐4/IL‐13; and that addition of the N4 GAS motif to an IL‐4/IL‐13‐unresponsive sequence of the human pendrin promoter conferred sensitivity to both ILs.

Collaboration


Dive into the Markus Paulmichl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Fürst

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Jakab

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge